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ABSTRACT

Inspired by the brain, Spiking Neural Networks (SNNs) are proposed and regarded as the
third generation of neural network models. SNNs are similar to the biological neurons that use
integrate-and-fire, threshold-trigger, and sparse-activate mechanisms. Due to the event-driven
computation, SNNs have extremely high energy efficiency than Artificial Neural Networks
(ANNSs) when deployed in neuromorphic chips and have the potential to implement efficient
brain-like artificial intelligence. However, due to the non-differentiable firing mechanism and
complex spatial-temporal propagation, it remains challenging to formulate efficient and high-
performance learning algorithms for SNNs. Most traditional methods can only be applied to
single-layer or single-spike SNNs, and the trained SNNs can not solve tasks that are more
difficult than MNIST classification. Recently, deep learning methods have been introduced
and improved the performance of SNNs greatly. Nevertheless, the task accuracy of SNNs is
still lower than that of ANNs, which constricts the applications of SNNs. This thesis focuses
on the learning algorithms of deep SNNs, and the contributions are as follows:

Firstly, this thesis proposes a joint learning method for both synapse weights and neural
dynamics to solve the issue of most existing algorithms that only train synapses while ignor-
ing the learning of neuronal dynamics and the heterogeneity of neurons. The proposed method
first analyzes the effect of the membrane constant of the Leaky Integrate-and-Fire (LIF) neuron
and points out its influence on the SNN. Then a general discrete-time spiking neuron model is
established and the LIF neuron model is derived. A clamp function is adopted to parameterize
the membrane constant of the LIF neuron and enables it to be learnable during training, which
implements the joint learning of synapse weights and neural dynamics. The experimental re-
sults show the proposed method improves up to 14% accuracy in both static and neuromorphic
datasets than traditional methods, with 50% fewer time-steps, better parameter robustness, and

faster convergence speed.
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Secondly, this thesis proposes the Spike-Element-Wise (SEW) ResNet and achieves the
residual learning in SNNs to solve the degeneration of Spiking ResNet. This method finds that
Spiking ResNet is hard to achieve the identify mapping and easy to cause the gradient vanish-
ing/exploding problem. Then the residual structure is improved by the proposed SEW ResNet.
This method successfully trains the first SNN with more than 100 layers, up t to 150 layers,
and achieves the highest accuracy on the ImageNet dataset among surrogate gradient methods
with up to 4% accuracy improvement. The experimental results validate that SEW ResNet
solves the degeneration problem. The gradient data recorded in the ResNet-152 structure are
also consistent with the analysis. Additionally, SEW ResNet achieves close accuracy of other

methods by using 10X less parameters.

Thirdly, this thesis proposes parallel acceleration methods to solve the issue that the SNNs
are simulated in serial, which causes low computation efficiency and long training times. The
proposed method designs acceleration methods for stateless synapses and stateful spiking neu-
rons in SNNs, respectively. For the stateless synapses, the proposed method merges the time-
step and the batch dimension, which fully parallelizes the computation over time-steps. Note
that this method only changes the computation order and will not cause any accuracy drop. For
the stateful spiking neurons, the Parallel Spiking Neuron (PSN) is proposed, which is general-
ized from the non-iterative formulation of neural dynamics of the traditional spiking neurons
without resetting. The PSN replaces the serial computation of membrane potentials by the
parallelizable matrix-matrix multiplication. This replacement also changes the generation of
hidden states from by indirect Markov chain to direct connections, which enhances the learn-
ing ability of long-term dependency. The experiment results show that the proposed method
accelerates the stateless synapses up to 3x and the stateful neurons up to 30x. Meanwhile,
the PSN achieves higher accuracy than traditional spiking neurons in both memory ability and
task accuracy. For the whole SNN, e.g., the Spiking ResNet-18 structure, the proposed method

accelerates the training up to 4X.

Fourth, this thesis proposes one of the first spiking deep learning frameworks, Spiking-
Jelly, to solve the issue that there is no mature framework available for deep SNNs. Researchers
who want to combine advanced deep learning methods with SNNs have to build basic spik-
ing neurons and synapses from scratch, resulting in repetitive and uncoordinated efforts. To
solve the above issues and promote research on spiking deep learning, we present Spiking-
Jelly, an open-source deep learning framework, to bridge deep learning and SNNs. Spiking-

Jelly provides a full-stack solution for spiking deep learning, including neuromorphic dataset
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processing, network building, model training, data recording, weight quantizing, and network
deployment. SpikingJelly accelerates the simulation of SNNs by computation graph optimiza-
tion and operation fusion, achieving up to 11X acceleration than other frameworks. Spiking-
Jelly is employed by many researches, the topics of which involve both spiking deep learning
and frontier interdisciplines including physics, materials, electrochemistry, and biomedicine,
indicating that SpikingJelly extends the boundary of neuromorphic computing. Nature Com-
putational Science reports that ”SpikingJelly has the potential to serve as an ecosystem for the
coordinated development of spiking deep learning”.

In conclusion, this thesis studies some learning algorithms of deep SNNs and proposes the
solutions in aspect of neurons, networks, computations, and software systems. More specifi-
cally, the proposed methods include the joint learning of synapses and neurons to promote ac-
curacy, the SEW ResNet structure to achieve the residual learning for training large-scale deep
SNNs, parallelize the synapses and neurons to accelerate training, and open-sources Spiking-
Jelly to provide full-stack solution for spiking deep learning. This thesis enriches the ecology
of neuromorphic computing and lays a foundation for developing high-performance brain-like

intelligence.
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