
SSF-CNN: SPATIAL AND SPECTRAL FUSION WITH CNN FOR
HYPERSPECTRAL IMAGE SUPER-RESOLUTION

Xian-Hua Han1 and Boxin Shi2 and YinQiang Zheng3

1Graduate School of Science and Technology for Innovation, Yamaguchi University, Japan
2Institute of Digital Media, School of EECS, Peking University, China

3National Institute of Informatics, Tokyo, Japan

ABSTRACT

Fusing a low-resolution hyperspectral image with the cor-
responding high-resolution RGB image to obtain a high-
resolution hyperspectral image is usually solved as an op-
timization problem with prior-knowledge such as sparsity
representation and spectral physical properties as constraints,
which have limited applicability. Deep convolutional neural
network extracts more comprehensive features and is proved
to be effective in upsampling RGB images. However, directly
applying CNNs to upsample either the spatial or spectral di-
mension alone may not produce pleasing results due to the
neglect of complementary information from both low reso-
lution hyper spectral and high resolution RGB images. This
paper proposes two types of novel CNN architectures to take
advantages of spatial and spectral fusion for hyperspectral
image superresolution. Experiment results on benchmark
datasets validate that the proposed spatial and spectral fusion
CNNs outperforms the state-of-the-art methods and base-
line CNN architectures in both quantitative values and visual
qualities

Index Terms— Spatial and spectral fusion CNN, super
resolution, hyperspectral image, SSF-CNN

1. INTRODUCTION

Hyperspectral (HS) imaging is an emerging technique that si-
multaneously obtains a set of images of the same scene on
a large number of narrow band wavelengths. The acquired
dense spectral bands of data significantly enrich the captured
scene information and greatly enhance performance in many
computer vision tasks such as object recognition and classifi-
cation [1, 2, 3], tracking [4], segmentation [5], medical image
analysis [6], and remote sensing [7, 8]. While HS imag-
ing achieves rich spectral information, for guaranteeing suffi-
ciently high signal-to-noise ratio, photon collection in hyper-
spectral sensors is usually performed in a much larger spa-
tial region and thus results in much lower spatial resolution
than RGB or Multi-Spectral (MS) images. Such low spa-
tial resolution provided by existing sensors restricts applica-
tion of existing computer vision algorithms for scene analy-

sis and understanding. Fortunately, multi-spectral (e.g., RGB
and RGB-NIR) images can be easily captured in high spa-
tial resolution together with a hyperspectral imaging system.
Therefore, fusing the low-resolution hyperspectral (LR-HS)
and high-resolution multi-spectral (HR-MS) images to gen-
erate a high-resolution hyperspectral (HR-HS) image, which
is called hyperspectral image super-resolution (HSI SR), is a
popular solution to achieve both high spatial and spectral in-
formation.

Recent HSI SR methods are optimization based. Mo-
tivated by spectral decomposition with different constraints
such as sparsity representation [9, 10, 11], spectral physical
properties [9], spatial context similarity [11], the reconstruc-
tion errors of the spectral representation for both LR-HS and
HR-MS (or HR-RGB) images [12, 11, 13] are jointly mini-
mized. The quality of the recovered HR-HS image by opti-
mization based methods greatly depends on the pre-defined
constraints. Furthermore, the optimization procedure usually
involves high computational cost due to the large number of
constraint terms.

Recently, deep convolutional neural network (DCNN) has
been successfully applied to spatial resolution magnification
of RGB images [14, 15, 16]. A straightforward idea to per-
form HSI SR is directly applying such networks to magnify
either the spatial dimension of LR-HS image or spectral di-
mension of HR-RGB image, which we call Spatial-CNN and
Spectral-CNN. Such naive approaches ignore the comple-
mentary advantage of fusing LR-HS and HR-RGB images.

In this paper, we propose spatial and spectral fusion
architectures of CNN (SSF-CNN) to the fusion of LR-HS
and HR-RGB images for HSI SR. Our SSF-CNN architec-
ture take the concatenated cubic data of HR-RGB image
and upsampled LR-HS images as input to simultaneously
learn spectral attribute in LR-HS image and spatial context
in HR-MS image for achieving more robust HR-HS image
estimation. We further add shorter connections between the
input layer and learned feature map layers to concatenate the
partial data (HR-RGB image) to feature maps, which we call
Partial Dense Connected SSF-CNN (PDCon-SSF). With the
partial concatenated connection, the PDCon-SSF reuse the
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available HR-RGB image as feature map for transferring the
available maximum spatial information to the recovered HR-
HS image. The main contributions of this work are two-fold:
1) we propose a novel spatial and spectral fusion architec-
ture (SSF-CNN), which jointly exploits the narrow bands of
spectral attribute in LR-HS image and the rich spatial context
in HR-RGB image for HSI SR; 2) we add partially shorter
connection between the input and feature map layers in SSF-
CNN architecture and propose the PDCon-SSF structure,
which shows even higher performance for HSI SR. Exper-
imental results on the benchmark datasets: CAVE [17] and
Harvard [18] validate that the proposed method outperforms
the state-of-the-art methods in both quantitative values and
visual qualities.

2. PROPOSED CNN ARCHITECTURE FOR HSI SR

The goal of HSI SR is to estimate a high resolution hyper-
spectral image Z ∈ RW×H×L, where W and H denote the
spatial dimensions and L is the spectral band number, from
a LR-HS image X ∈ Rw×h×L (w � W , h � H) and a
HR-MS (RGB) image Y ∈ RW×H×l (l � L). In our ex-
periments, the available HR-MS image is a RGB image with
spectral band number l = 3. The image formation model for
depicting the relationship between the desired HR-HS and the
input LR-HS images can be formulated as

X = Z ∗Spat D ↓ +n (1)

where D represents a 2-dimensional (spatial) filter, ∗Spat de-
notes the convolutional operation in spatial domain, ↓ is the
down-sampling operation, and n denotes the noise that fol-
lows the Gaussian distribution with zero mean value. Simi-
larly, the image formation model for depicting the relation-
ship between the desired HR-HS and the input HR-MS im-
ages can be formulated as

Y = Z ∗Spec R ↓ +n (2)

where R represents the spectral transformation matrix (a one-
dimensional spectral-directional filter) decided by camera de-
sign, which maps the HR-HS image Z to the HR-RGB image
Y, ∗Spec denotes the convolutional operation in spectral do-
main and ↓ is the down-sampling operation.

To apply CNN on the problems above, the most straight-
forward way is to learn HR-HS images directly from the avail-
able LR-HS images, which we call Spatial-CNN. For RGB
images, such an approach is able to expand the spatial dimen-
sion by no more than 8. For HSI SR problem, a much larger
expanding rate is always desired (e.g., 32) due to very low res-
olution of original LR-HS images, so Spatial-CNN may show
degenerated results for HSI SR problem. With only HR-RGB
image as input, it is also possible to design a CNN architec-
ture to expand the spectral resolution to produce an HR-HS
image, which we call Spectral-CNN. Spectral-CNN neglects

the hyperspectral attribute (the relation between narrow band
spectra) in HS images, so it may also show unsatisfactory re-
sults. These issues motivate use to develop CNN architectures
for simultaneously taking consideration of the available LR-
HS and HR-MS images, and combine spectral attribute in LR-
HS image and spatial context in HR-MS image to estimate a
more robust HR-HS image.

2.1. The baseline CNN architecture

Due to the promising results and design simplicity, we de-
velop the Baseline Upsampling Network (BUN) based on
CNN structure for RGB image superresolution [14, 19]. BUN
mainly consists of three convolutional layers and they per-
form three operations to map from LR images to HR images
following the schematic concept in sparse coding-based SR:
patch extraction and representation, non-linear mapping, and
reconstruction [14, 19]. Patch extraction and representation
extracts some overlapping patches from the input image, and
explains each patch as a high dimensional vector. The con-
volution layers in CNN acts as a non-linear function which
maps a high-dimensional vector (the representation of the
patches in the input) to another high-dimensional vector (the
feature map in the middle-layer of CNN). Reconstruction
process combines the mapped CNN features into the final HR
image.

BUN share similar structures as SRCNN [14, 19], as
shown in the top-row of Fig. 1. The original SRCNN uses
the Y-component only in the ’Ycbcr’ color space as input to
predict the HR Y-image, and combines the bicubic upsam-
pled ’cb’ and ’cr’ components to reconstruct the HR RGB
image. The spatial filters in three convolutional layers of the
SRCNN use sizes of 9 ∗ 9, 1 ∗ 1, 5 ∗ 5, respectively. But we
make several modifications to make it suitable for the HSI SR
problem. Since HSI SR attempts to recover high resolution
in not only spatial but also spectral-domain (maintain the
reliability of the spectral response), we use all spectral bands
of the available LR images in spatial or spectral domain (the
LR-HS or HR-RGB image) as input instead of the illumi-
nation image (Y-component) only like in the SRCNN [14].
With the increasing of the channel number in the input, we
set the spatial filter sizes in three convolutional layers as 3∗3,
3∗3, 5∗5 with full connection in channel for the BUN of our
HSI SR CNN architectures.

2.2. The variant CNN architecture of HSI SR

With BUN available, the most straightforward way to apply
BUN for HSI SR is to learn the HR-HS image Z directly from
the available LR-HS image X, namely Spatial-CNN, or to
learn Z from the HR-RGB image Y, namely Spectral-CNN.
However, Spatial-CNN and Spectral-CNN, perform upsam-
pling in only one dimension of the data, while we have both
X and Y as input. Next, we introduce how to jointly take
advantages of X and Y using BUN.
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Fig. 1. The network architectures of the proposed SSF and
PDCon-SSF CNN. Via adding the shortcut connection (the
dot line in ’blue color’) between the available HR-RGB im-
age and the learned feature, we construct the PDCon-SSF ar-
chitecture from SSF CNN.

SSF-CNN: SSF-CNN first combines the bicubic upsam-
pled LR-HS image with the same spatial resolution as the HR-
RGB image (from spatial size w × h to W ×H) as

ZX
b = Xb ↑ (3)

and it then concatenates all bands (L bands) of the upsampled
LR-HS image with the available HR-RGB image to form a
cubic data with L+ 3 channels as the input. The spatial sizes
of the convolutional layer filters in our CNN architecture are
the same as described in the above section, and the spectral
sizes are the channel lengths of its inputs. The architecture
of the SSF-CNN is shown Fig. 1 excepting the ’blue’ color
part. Since the SSF-CNN use the concatenated upsampled
LR-HS and HR-RGB images as input, the first operation in
this CNN architecture is patch/spectral extraction and repre-
sentation instead of the spatial structure representation for the
Y-component input in the original SRCNN. Because of the
increased channel number, the patch/spectral representation
in SSF-CNN would lead to high dimension using the spatial
filter size: 9× 9 of the first convolutional layer in the original
SRCNN, and thus we reduce it to 3×3 while increase the spa-
tial filter size from 1× 1 to 3× 3 in the second convolutional
layer for taking considering of more spatial context.

PDCon-SSF: Recent CNN work incorporates shorter
connections between layers for more accurate and effi-
cient training of substantially deeper architectures such as
ResNets [20] and Highway Networks [21], or exploits con-
catenation between different layer for information and feature
reuse such as DenseNet [22], which manifest considerable
improvements in different applications.

For HSI SR problem, since the available HR-RGB image
has the same high spatial resolution as the output, while the
expanding factor in spectral-domain is much smaller (about
10 from 3 to 31) than those in spatial-domain (32 times from
16/32 to 512/1024 in horizontal and vertical directions, re-
spectively), we concatenate the available HR-RGB image (a
part data of the input: Partial) to the outputs of the Conv and
RELU blocks (Densely) in the CNN structure for transferring
the available maximum spatial information, and name this

Table 1. The average and standard deviation of RMSE,
PSNR, SAM and ERGAS using different CNN models on
CAVE database.

Spa.-CNN Spec.-CNN SSF-CNN PDCon-SSF
RMSE 24.49±9.35 5.73±2.20 2.20±0.73 2.18±0.75
PSNR 20.97±3.53 33.63±3.70 41.85±3.48 41.93±3.57
SAM 17.61±6.30 8.40±2.37 4.39±1.42 4.38±1.39
ERGAS 2.54±0.89 0.57±0.37 0.23±0.11 0.22±0.10

new CNN architecture as PDCon-SSF. In PDCon-SSF-CNN,
we add shortcut connections between the input HR-RGB
image and the output feature maps of the first and second
Conv/RELU layers for maximum spatial information trans-
ferring, and thus the spatial size of the HR-RGB image and
the map feature in the first and second Conv/RELU layers
should be same for concatenating in the channel direction.
For maintain the same spatial size of the input and outputted
feature maps in the first and second Conv/RELU layers, we
set padding parameter as 1 with kernel size parameter 3 of
the convolutional filters, and then the concatenation of the
HR-RGB image to the feature maps leads to +3 channels of
cubic data for the processing of next layer. The flowchart
of the proposed PDCon-SSF-CNN architecture is shown in
Fig. 1.

3. EXPERIMENTAL RESULTS

We evaluate the proposed approach using two publicly avail-
able HS databases: CAVE dataset [17] with 32 indoor im-
ages, and Harvard dataset [18] with 50 indoor and outdoor
images recorded under daylight illumination. The dimen-
sions of the images from CAVE dataset are 512 × 512 pix-
els, with 31 spectral bands of 10nm wide, covering the vis-
ible spectrum from 400 to 700nm, while the images from
Harvard dataset have the dimensions of 1392 × 1040 pixels
with 31 spectral bands of width 10nm, ranging from 420 to
720nm, we extract the top left 1024 × 1024 pixels in our
experiments. We treat the original images in the databases as
ground truth Z, and downsample them by a factor of 32 to cre-
ate 16× 16 images using bicubic interpolation. The observed
HR-RGB images Y are simulated by integrating the ground
truth over the spectral channels using the spectral response
R of a Nikon D7006 camera. We have randomly selected
20 HSIs from CAVE database to train CNN models, and the
remaining 12 images are used for validation of the perfor-
mance of the proposed CNN method. For Harvard database,
10 HSIs have been randomly selected for training, and the
remaining 40 HSIs are used as test for validation. To evalu-
ate the quantitative accuracy of the estimated HS images, four
objective evaluation metrics including root-mean-square error
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Table 2. The average and standard deviation of RMSE, PSNR, SAM and ERGAS using our proposed method and the state-of-
the art methods of CSU [12] and NSSR [11] on both CAVE and Harvard datasets.

CAVE dataset Harvard dataset
Methods CSU [12] NSSR [11] PDCon-SSF CSU [12] NSSR [11] SSF PDCon-SSF
RMSE 2.97±1.09 2.37±0.91 2.18±0.76 1.93±1.04 1.72±0.93 1.76±1.00 1.74±0.95
PSNR 39.28±3.49 41.24±3.50 41.93±3.57 43.40±4.00 44.35±3.84 44.31±4.28 44.33±4.18
SAM 5.78±2.54 5.14±1.53 4.38±1.39 2.95±1.07 3.06±1.06 3.05±1.12 3.03±1.15
ERGAS 0.33±0.18 0.25±0.11 0.22±0.10 0.25±0.21 0.22±0.17 0.22±0.18 0.20±0.18

(RMSE), peak-signal-to-noise ratio (PSNR), relative dimen-
sionless global error in synthesis (ERGAS) [23], and spectral
angle mapper (SAM) [9] are used.

We compare the performance of four types of CNNs
(Spatial-CNN, Spectral-CNN, SSF-CNN, and PDCon-SSF)
for HSI SR. The average and the standard deviation of RMSE,
PSNR, SAM and ERGAS of the 12 test images in CAVE
database are shown in Table 1, which manifests much bet-
ter results of the Spectral-CNN than Spatial-CNN and more
performance improvement using SSF-CNN and PDCon-SSF
CNN models. One recovered HS image example and the cor-
responding residual images with the ground-truth HR images
from CAVE database is visualized in Fig. 2 using different
CNN models. Since the significant performance improve-
ment of SSF-based network over the Spatial-CNN and the
Spectral-CNN has been verified, for Harvard dataset we only
train the SSF-CNN and PDCon-SSF models. The average
and the standard deviation of RMSE, PSNR, SAM and ER-
GAS of the 40 test images in Harvard database are shown in
Table 2, which shows the learned SSF-CNN and PDCon-SSF
models even with 10 Harvard training images only can give
promising recovery performance.

We then compare with state-of-the-art HSI SR methods
considering fusion of LR-HS and HR-MS images. The fusion
of the LR-HS and HR-MS images have been widely explored
and various methods [24, 25, 10, 13, 9, 12, 11] have been
developed where couple spectral unmixing (CSU) [11] and
Non-Negative Structured Sparse Representation (NSSR) [11]
manifest impressive performance compared with other fu-
sion approaches, so we only show comparison results with
CSU [12] and NSSR [11] via rerunning the released source
codes in [12, 11].The compared results are shown in Table 2.

In this experiment, PDCon-SSF shows the best perfor-
mance on the 12 test samples of CAVE dataset, and pro-
vides the similar performance with NSSR [11] on the 40
test samples of Harvard dataset. It should be noted that we
only used 10 training images (small-scale training images)
randomly selected from Harvard dataset for learning CNN
model parameters, and the PDCon-SSF-CNN manifests com-
parable average performance with NSSR [11], which have
been proven to achieve the significant performance improve-
ment [11] compared with all other state-of-the-art HSI SR

Spatial-CNN(diff.)   Spectral-CNN (diff.)  SSF-CNN (diff.)  PDCon-SSF-CNN (diff.) 

GT HR image Spatial-CNN     Spectral-CNN             SSF-CNN               PDCon-SSF-CNN

255

0

10

0

Input LR image 

Fig. 2. An example of the reconstructed HR-HS image with
the expanding factor as 32 in the spatial domain using 4 types
of CNNs: Spatial-CNN, Spectral-CNN and our proposed spa-
tial and spectral fusion CNNs: SSF-CNN and PDCon-SSF-
CNN.

methods. Via increasing the images number to include more
varieties of scenes for training, we believe that more general-
ized CNN model can be learned and the performance of HSI
SR is prospected to be further improved.

4. CONCLUSIONS

We proposed spatial and spectral fusion CNN (SSF-CNN)
for HS image super-resolution. Instead of taking only spa-
tial or spectral data as input, the proposed SSF-CNN concate-
nated the upsampled LR-HS image and the HR-RGB image
to learn the high-resolution image in both spatial and spectral
domains, which simultaneously took advantages of spectral
attribute in LR-HS image and spatial context in HR-RGB im-
age to estimate a more robust HR-HS image. In order to effi-
ciently transfer the HR spatial information from the HR-RGB
image to the recovered HR-HS output, we added shorter con-
nections between the input layer and other feature map layers
to concatenate the partial data (HR-RGB image) with feature
maps as Partial Dense Connected SSF-CNN (PDCon-SSF).
Comprehensive experiments on two public HS datasets vali-
dated that SSF-CNN and PDCon-SSF achieved better perfor-
mances than state-of-the-art methods.
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