
ADAPTIVE MULTI-DIMENSION SPARSITY BASED COEFFICIENT ESTIMATION FOR
COMPRESSION ARTIFACT REDUCTION

Jing Mu1, Xinfeng Zhang2, Ruiqin Xiong1, Siwei Ma1, and Wen Gao1

1 Institute of Digital Media, Peking University, Beijing 100871, China
2 Rapid-Rich Object Search (ROSE) Lab, Nanyang Technological University, Singapore

Email: {jmu, rqxiong, swma, wgao}@pku.edu.cn, xfzhang@ntu.edu.sg

ABSTRACT
Sparsity has shown promising results in various image
restoration applications. Recent advances have suggested
that structured or group sparsity often leads to more pow-
erful results in compression artifact reduction studies. In
this paper, we introduce nonlocal multi-dimension sparsity in
an adaptive space-transform domain, which performs multi-
scale wavelet transform on DCT coefficients of similar patch-
es. The new transform efficiently reduces image redundan-
cies between inner block and inter block simultaneously, thus
it can substantially achieve sparse representation for images.
Furthermore, a band-based filter is proposed to reduce com-
pression artifacts by shrinking transform coefficients adap-
tively. Because of the overlapped processing, adaptive aggre-
gation is used to combine different estimates for each block.
The proposed algorithm achieves improvement over some
methods in terms of both objective and subjective qualities.

Index Terms— Compression artifact reduction, Multi-
dimension sparsity, Adaptive shrinkage, Adaptive transform
domain

1. INTRODUCTION

Block-based Discrete Cosine Transform (BDCT) has been
widely used in the existing compression standards including
JPEG, MPEG, H.264 and HEVC. However, due to the fact
that the image is independently transformed and quantized by
block, the compressed image often suffers from severe degra-
dation. In order to reduce compression artifacts, various re-
searches and studies have been performed in recent years.

One of the most traditional ways is filtering approaches to
smooth the block boundaries directly. Iterative image recov-
ery algorithms were proposed using the traditional projection
onto convex sets (POCS) [1, 2]. In [3], a Gaussian filter is
used to process the pixels around block boundaries to smooth
out the artifacts. This kind of method has a low cost and can
be easily implemented, but cannot preserve edges and details
well. Takeda et al. [4] proposed a denoising method based on
a steering kernel regression framework according to the sig-
nal information. Also, total variation [5], and Markov random

field (MRF) [6] were utilized as image prior models to seek
the MAP estimation of the original image. These methods
only consider the smoothness in pixel domain, but ignore the
compressed DCT coefficients in the bit stream.

The methods in [7] directly processed compressed images
in DCT domain to reduce the artifacts. Choy et al. [8] esti-
mates the original DCT coefficients from the quantized ones
with the local mean and variance of the coefficients in each
sub-band. Recently, Zhang et al. proposed to utilize image
block similarity prior model to reduce compression artifacts
by the coefficients estimated from non-local blocks [9, 10].

Although these methods can achieve good performances,
they exploited a fixed domain (DCT) which is signal inde-
pendent. Considering the fact that the sparse domain of nat-
ural image varies spatially, [11, 12] try to restore images in
an adaptive transform domain. BM3D [11] generates re-
markable results by applying a 3D transform on a group
of similar image patches. However, the signal-independent
hard-thresholding of coefficients sometimes produces low-
frequency noise and edge ringing. Based on the idea of group
sparsity in BM3D, in this paper, we enforce a nonlocal multi-
dimension sparsity via DCT and wavelet transform as shown
in Fig. 1. DCT is used to reduce the redundancy of inner
block. We use wavelet transform to reduce redundancy of in-
ter block in multi-scale. DCT and multi-scale wavelet trans-
form form the adaptive multi-dimension transform domain.
The multi-dimension transform offers a powerful mechanis-
m of characterizing the structured sparsities of natural im-
ages. To make our approach tractable and robust, a band-
based wavelet shrinkage technique that is dependent on the
signal is developed. Because of the overlapped processing,
different estimates for each pixel need to be combined. Adap-
tive aggregation is used as a particular averaging procedure.
Experimental results show that our approach achieves notice-
able improvement in terms of both objective and subjective
qualities of the reconstruction images.

The remainder of the paper is organized as follows. Sec-
tion 2 utilizes the concept of multi-dimension sparsity and
shows how this type of sparsity is incorporated into the frame-
work of artifact reduction. Section 3 gives the implemen-



Fig. 1. The flowchart of the proposed multi-dimension sparsity based compression artifact reduction method.

tation details of the framework, and introduces the adaptive
wavelet shrinkage to solve the objective problem. Experimen-
tal results are reported in Section 4. Section 5 concludes this
paper.

2. MULTI-DIMENSION SPARSITY IN TRANSFORM
DOMAIN

In this section, we establish an adaptive transform domain,
which exploits nonlocal multi-dimension sparsity. This trans-
form can depict the self-similarity of natural images, and re-
tain the sharpness effectively.

2.1. Problem Formulation

We use x to represent the image, and use xi and Xi to repre-
sent pixel intensity and the transform coefficients of a block,
which is located in position i of size Bs × Bs . The BDCT
compressed image can be modeled as follows,

Xi = T (xi)→ Yi = Q (Xi)→ yi = T−1 (Yi) (1)

where T is DCT transform, and Q is the operation of quan-
tization. Yi and yi are reconstructed coefficients and pixel
intensity of block i . Then we have the following equation:

yi = xi + ei (2)

where ei is the compression error for the image patch xi.

2.2. Nonlocal Multi-dimension Sparsity in Transform Do-
main

Motivated by the great success of sparse representation [13]
and self-similarity [14] in image restoration, we introduce a
nonlocal multi-dimension sparsity in transform domain. We
divide the image x intoN overlapped patches. For each patch
xi, a group of similar patches Zxi

is collected. The entire
group is formed into a data matrix. According to the self-
similarity property of natural images, all the non-local sim-
ilar patches have similar underlying structures. Then multi-
dimension transform TMD is used to reduce redundancy of
the matrix.

TMD is the combination of a 2D DCT and a multi-scale
wavelet transform, which is illustrated in Fig. 2. DCT re-
duces the redundancy of inner block, but ignores the corre-
lation of DCT coefficients between similar patches, i.e. the
redundancy of inter block. 2D DCT of each block encourages
the alignment of sparse coefficients along the column direc-
tion only. In other words, it does not treat the row and column
spaces equally. We introduce multi-scale wavelet transform to
reduce the redundancy between similar patches and get more
sparse coefficients. Section 3 will show how to use the prior
into decoded image reconstruction. Therefore, the nonlocal
multi-dimension sparsity in transform domain is written as,

‖Θx‖ 1 =
n∑

i=1

∥∥TMD (Zxi
)
∥∥
1

(3)

3. COMPRESSION ARTIFACT REDUCTION VIA
MULTI-DIMENSION SPARSITY IN TRANSFORM

DOMAIN

Using Eq. (3) as a prior of image, the proposed optimization
problem for our method is formulated as:

x = argmin
x

‖x− y‖ 22 + α‖Θx‖ 1 (4)

where x is original image, and y is the compressed image.
The optimization problem in Eq. (4) is non-convex

and quite difficult to solve directly because of the non-
differentiability and non-linearity of the sparsity term. Sec-
tion 3.2 shows an efficient solution based on adaptive wavelet
shrinkage, which is one of the main contributions of this pa-
per.

3.1. Wavelet Shrinkage for l1-Minimization

The frequencies of pixels appearing in the overlapping patch-
es are roughly equal, hence

‖x− y‖ 22 ≈ c ‖xi − yi‖ 22 (5)



where c is a positive constant. Considering the unitary prop-
erty of TMD, then we rewrite Eq. (4) as Eq. (6).

x = argmin
x

∑
i

(∥∥W
(
T2D (Zxi

)
)
−W

(
T2D (Zyi

)
)∥∥ 2

2

)
+ α

∑
i

∥∥W
(
T2D (Zxi

)
)∥∥

1
(6)

where T2D is DCT matrix and W is multi-scale wavelet trans-
form matrix. Using mentioned above can Eq. (6) as follows,

x = argmin
x

‖Θx −Θy‖ 22 + α‖Θx‖ 1 (7)

Eq. (7) is a standard l1− l2 problem, which can be solved
by soft-thresholding [15]. Based on Eq. (1), we rewrite E-
q. (6) as Eq. (8)

x = argmin
x

∑
i

(
‖W (ZXi

)−W (ZYi
)‖ 22
)

+ α
∑
i

(
‖W (ZXi

)‖ 1
)

(8)

For each block i , we can get Eq. (9):

ẐXi
= max (|ZXi

| − τ, 0) · sgn (ZXi
) (9)

where τ is threshold of different band for block i . Then x is
gained by inverse wavelet transform and 2D DCT.

3.2. Bandwise Threshold Estimation

In many methods, the threshold is an empirical and univer-
sal rule, which is independent on the signal. However, this
threshold is not suitable for the multi-dimension transform
coefficients which are highly sparse. We will provide an adap-
tively chosen threshold dependent on signal.

As demonstrated in [15], under the assumption of Lapla-
cian prior, according to Bayes theory, the rule for choosing
the threshold τ is

τ = 2
√
2σ2

e

/
σW(ZXi)

(10)

σ2
e is the mean square error of compression coefficients.

The compression error, which can be approximated as the u-
niform distribution, is caused by quantizing the coefficients
of a sensed image to a number of discrete levels. According
to the expectation of uniform distribution, we can get σ2

e

σ2
e =

1

12
Q2 (11)

where Q = [qi,j ]i,j=1,...,8 is the quantization table.
In addition, σW(ZXi)

denotes the variance of signal co-
efficients. For simplicity, we exploit 2D wavelet transform.
For band k of DCT coefficients, we can get four levels, HHk ,
HLk , LHk , LLk , so we estimate σW(ZXi)

separately, i.e. for

Fig. 2. Diagram of multi-dimension transform. Inverse trans-
form is the mirror flow of this process. (We take 1-D wavelet
as an example).

each band k , σk
W(ZXi)

=
{
σk

HH, σ
k
HL, σ

k
LH, σ

k
LL

}
. Because the

number of the samples of each wavelet level is limited, the
variance of coefficients cannot be calculated accurately. We
approximate the covariance using the maximum absolute co-
efficients of each band. Taking coefficients of HH level of
band k as an example, we can get Eq. (12)

σk
HH = max

(
abs

(
WHH

(
Zk

xi

)))
(12)

According to Eq. (10), we can get adaptive of different levels
of wavelet transform of each DCT band.

3.3. Global Estimation by Aggregation and Quantization
Constraint

Due to overlapping of blockwise estimation, more than one
block-estimate can be located at exactly the same coordinate.
Hence, aggregation is performed by a weighted averaging at
those pixel positions where there are overlapping blockwise
estimates.

In general, the blockwise estimates have different vari-
ance for each pixel. However, it is quite demanding to take
into consideration all these effects. Aggregation weights are
inversely proportional to the total sample variance of the cor-
responding blockwise estimates. That is, noisier block-wise
estimates have smaller weights. The mean square error of
transform coefficients is as follows,

E

[(
X̂−X

)2]
= E

{
[max (|Zx| − τ, 0) · sgn (Zx)−X]

2
}

=

{
E
(
e2 + X2

)
−τ ≤ X ≤ τ

E
(
e2 + τ2

)
else

≤ σ2
e + E

(
τ2
)

(13)

where X̂ is the estimation of original DCT coefficients X,



(a) Vessels (b) Barbara (c) Straw

Fig. 3. PSNR vs. JPEG QF of Different Methods.

which is get from Eq. (9). So we assign the weight as

w =
1(

σ2
e + ‖τ‖

2
) (14)

Finally, for each block, we can get a data matrix recon-
structed by the local patch clustering. Then the processed da-
ta matrix is reformed into image patches and relocated to their
original positions byw to average all of the estimates. Each of
the estimated block coefficients should be in the quantization
interval

[
Yi

min,Yi
max
]

Yi
min = Yi −

Q

2
Yi

max = Yi +
Q

2
(15)

Table 1. PSNR Results of Six Compression Artifact Reduc-
tion Algorithms When QF = 35 (UNIT: DB)

Image JPEG Li’s BM3D DicTv Sun’s Ours
Vessels 32.73 33.49 34.00 33.91 34.20 34.21
Barbara 31.98 33.10 33.25 33.01 33.06 33.92
Straw 27.54 28.15 28.31 28.26 28.17 28.39
Avg 30.75 31.58 31.85 31.72 31.82 32.16

Table 2. SSIM Results of Six Compression Artifact Reduc-
tion Algorithms when QF = 35

Image JPEG Li’s BM3D DicTv Sun’s Ours
Vessels 0.954 0.963 0.965 0.962 0.970 0.971
Barbara 0.927 0.932 0.941 0.928 0.940 0.947
Straw 0.908 0.914 0.911 0.914 0.906 0.921
Avg 0.930 0.936 0.939 0.935 0.939 0.946

4. EXPERIMENTAL RESULTS

In this section, we evaluate the efficiency of the proposed ap-
proach and compare it with some recently presented methods.

To make our comparative study more thoroughly, we exploit
both conventional images (256×256) and biomedical images
(96× 96).

4.1. Parameter Setting

The experiments are implemented on MATLAB platform. In
our implementation, parameters of the proposed method in-
cluding L, Bs, and c are set empirically, and are set fixed for
all test images. Concretely, the size of each block, i.e., Bs,
is set to be 8 × 8, the size of training window for searching
similar patches, i.e. , L×L is set to be 41× 41, and the num-
ber of best matched blocks, i.e.L×L, N is set to be 16 when
QF<25, and N is set to be 32 when QF ≥ 25. Since multi-
dimension transform coefficients may not strictly conform to
Laplacian distribution, the threshold τ is adjusted by a factor
δ so as to get the best possible performance of shrinkage. δ is
empirically chosen, only depending on the value of σ2

e .

4.2. Experimental Comparisons

The test images, Barbara, Straw and Vessels, are compressed
by JPEG at different QFs. Our approach is compared with
four representative methods in literature, i.e., deblocking
methods, i.e. Sun’s [16] and Li’s method [17], and denois-
ing methods, i.e. the classic BM3D [11] and DicTv [18]. It is
worth emphasizing that Suns method is known as one of the
state-of-the-art algorithms for compression artifact reduction,
and BM3D is regarded as the state-of-the-art algorithms for
denoising.

Fig. 3 plots the PSNR curves of compared algorithms on
the test images, which are coded by JPEG compression stan-
dard with five quality factors (QF): 5, 15, 25, 35 and 45 re-
spectively. Quality factors, which range from 1 to 100, are in-
dexes of a set of quantization matrixes. The larger QF values,
the less compression error. The PSNR curves clearly show
that the proposed technique achieves the best reconstruction
performance for all test images on all quality factors. Take
QF = 35 as an example, PSNR and SSIM are listed in Ta-
ble 1 and Table 2, where we have highlighted the best method.



(a) JPEG (PSNR=24.30dB) (b) Li’s (PSNR=23.08dB) (c) BM3D(PSNR=24.37dB)

(d) DicTv (PSNR=24.05dB) (e) Sun’s (PSNR=24.36dB) (f) Ours (PSNR=24.59dB)

Fig. 4. Visual Comparison of Reconstructed Images (QF=5).

The best average PSNR of the proposed algorithm are found
to outperform all competitors. In addition to its objective per-
formance, the new JPEG reconstruction technique also ap-
pears to obtain better perceptual quality of the test images.
The processed results of the image reconstruction algorithms
for the test images Vessels and Barbara with QF = 5 and
QF = 15 are shown in Fig. 4 and Fig. 5. In order to ob-
serve the visual quality, we compare whole image and details
of Vessels. Obviously, our proposed method preserves both
sharp edges and smooth areas, and can show much clearer
and better visual results than the other competing methods.

5. CONCLUSIONS

In this paper, a multi-dimension sparsity is introduced, which
efficiently characterizes the intrinsic sparsity of natural im-
ages in an adaptive space-transform domain. In order to
reduce redundancy of DCT coefficients gained from non-
local similar patches, we use multi-scale wavelet transform
to reduce the redundancy of inter DCT blocks. In addition,
wavelet shrinkage is used to solve the problem. And the
threshold is adaptively chosen based on the variance of dif-
ferent band coefficients. Last but not least, because of the
overlap of pathces, adaptive aggregation is used to combine d-
ifferent estimations for each patch. Experimental results show
that the proposed method achieves a remarkably better recon-
struction quality than recently presented methods in both the
subjective and the objective quality.
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