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Abstract—The problem of estimating subjective visual properties from image and video has attracted increasing interest. A subjective

visual property is useful either on its own (e.g. image and video interestingness) or as an intermediate representation for visual

recognition (e.g. a relative attribute). Due to its ambiguous nature, annotating the value of a subjective visual property for learning a

prediction model is challenging. To make the annotation more reliable, recent studies employ crowdsourcing tools to collect pairwise

comparison labels. However, using crowdsourced data also introduces outliers. Existing methods rely on majority voting to prune the

annotation outliers/errors. They thus require a large amount of pairwise labels to be collected. More importantly as a local outlier

detection method, majority voting is ineffective in identifying outliers that can cause global ranking inconsistencies. In this paper, we

propose a more principled way to identify annotation outliers by formulating the subjective visual property prediction task as a unified

robust learning to rank problem, tackling both the outlier detection and learning to rank jointly. This differs from existing methods in

that (1) the proposed method integrates local pairwise comparison labels together to minimise a cost that corresponds to global

inconsistency of ranking order, and (2) the outlier detection and learning to rank problems are solved jointly. This not only leads to better

detection of annotation outliers but also enables learning with extremely sparse annotations.

Index Terms—Subjective visual properties, outlier detection, robust ranking, robust learning to rank, regularisation path

Ç

1 INTRODUCTION

THE solutions to many computer vision problems involve
the estimation of some visual properties of an image or

video, represented as either discrete or continuous varia-
bles. For example scene classification aims to estimate the
value of a discrete variable indicating which scene category
an image belongs to; for object detection the task is to esti-
mate a binary variable corresponding the presence/absence
of the object of interest and a set of variables indicating its
whereabouts in the image plane (e.g. four variables if the
whereabouts are represented as bounding boxes). Most of
these visual properties are objective; that is, there is no or lit-
tle ambiguity in their true values to a human annotator.

In comparison, the problem of estimating subjective
visual properties (SVPs) is much less studied. This class of
computer vision problems nevertheless encompass a variety

of important applications. For example: estimating attrac-
tiveness [1] from faces would interest social media or online
dating websites; and estimating properties of consumer
goods such as shininess of shoes [2] improves customer
experiences on online shopping websites. Recently, the
problem of automatically predicting if people would find
an image or video interesting has started to receive increas-
ing attention [3], [4], [5]. Interestingness prediction has a
number of real-world applications. In particular, since the
number of images and videos uploaded to the Internet is
growing explosively, people are increasingly relying on
image/video recommendation tools to select which ones to
view. Given a query, ranking the retrieved data with rele-
vance to the query based on the predicted interestingness
would improve user satisfaction. Similarly user stickiness
can be increased if a media-sharing website such as You-
Tube can recommend videos that are both relevant and
interesting. Other applications such as web advertising and
video summarisation can also benefit. Subjective visual
properties such as the above-mentioned ones are useful on
their own. But they can also be used as an intermediate
representation for other tasks such as visual recognition,
e.g., different people can be recognised by how pale their
skin complexions are and how chubby their faces are [6].
When used as a semantically meaningful representation,
these subjective visual properties often are referred to as
relative attributes [2], [6], [7].

Learning a model for subjective visual property (SVP)
prediction is challenging primarily due to the difficulties
in obtaining annotated training data. Specifically, since
most SVPs can be represented as continuous variables (e.g.
an interestingness/aesthetics/shininess score with a value
range of 0 to 1 with 1 being most interesting/aesthetically
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appealing/shinning), SVP prediction can be cast as a regres-
sion problem—the low-level feature values are regressed to
the SVP values given a set of training data annotated with
their true SVP values. However, since by definition these
properties are subjective, different human annotators often
struggle to give an absolute value and as a result the annota-
tions of different people on the same instance can vary hugely.
For example, on a scale of 1 to 10, different people will have
very different ideas on what a scale 5 means for an image,
especially without any common reference point. On the other
hand, it is noted that humans can in general more accurately
rank a pair of data points in terms of their visual properties
[8], [9] , e.g. it is easier to judge which of two images is more
interesting relatively than giving an absolute interestingness
score to each of them.Most existing studies [1], [2], [9] on SVP
prediction thus take a learning to rank approach [10], where
annotators give comparative labels about pairs of images/
videos and the learned model is a ranking function that pre-
dicts the SVP value as a ranking score.

To annotate these pairwise comparisons, crowdsourcing
tools such as Amazon Mechanic Turk (AMT) are resorted
to, which allow a large number of annotators to collaborate
at very low cost. Data annotation based on crowdsourcing is
increasingly popular [2], [4], [5], [6] recently for annotating
large-scale datasets. However, this brings about two new
problems: (1) Outliers—The crowd is not all trustworthy: it
is well known that crowdsourced data are greatly affected
by noise and outliers [11], [12], [13] which can be caused by
a number of factors. Some workers may be lazy or malicious
[14], providing random or wrong annotations either care-
lessly or intentionally; some other outliers are unintentional
human errors caused by the ambiguous nature of the data,
thus are unavoidable regardless how good the attitudes of
the workers are. For example, the pairwise ranking for
Fig. 1a depends on the cultural/psychological background
of the annotator—whether s/he is more familiar/prefers
the story of Monkey King or Cookie Monster.1 When we
learn the model from labels collected from many people, we
essentially aim to learn the consensus, i.e., what most people
would agree on. Therefore, if most of the annotators grow-
ing up watching Sesame Street thus consciously or subcon-
sciously consider the Cookie Monster to be more interesting
than the Monkey King, their pairwise labels/votes would
represent the consensus. In contrast, one annotator who is
familiar with the stories in Journey to the West may choose
the opposite; his/her label is thus an outlier under the con-
sensus. (2) Sparsity—the number of pairwise comparisons
required is much bigger than the number of data points

because n instances define a Oðn2Þ pairwise space. Conse-
quently, even with crowdsourcing tools, the annotation
remains be sparse, i.e. not all pairs are compared and each
pair is only compared a few times.

To deal with the outlier problem in crowdsourced
data, existing studies take a majority voting strategy [2],
[4], [6], [15], [16], [17], [18]. That is, a large budget of
5� 10 times the number of actual annotated pairs
required is allocated to obtain multiple annotations for
each pair. These annotations are then averaged over so as
to eliminate label noise. However, the effectiveness of the
majority voting strategy is often limited by the sparsity
problem—it is typically infeasible to have many annota-
tors for each pair. Furthermore, there is no guarantee that
outliers, particularly those caused by unintentional
human errors can be dealt with effectively. This is
because majority voting is a local consistency detection
based strategy—when there are contradictory/inconsis-
tent pairwise rankings for a given pair, the pairwise rank-
ings receiving minority votes are eliminated as outliers.
However, it has been found that when pairwise local
rankings are integrated into a global ranking, it is possi-
ble to detect outliers that can cause global inconsistency
and yet are locally consistent, i.e., supported by majority
votes [19]. Critically, outliers that cause global inconsis-
tency have more significant detrimental effects on learn-
ing a ranking function for SVP prediction and thus
should be the main focus of an outlier detection method.

In this paper we propose a novel approach to subjective
visual property prediction from sparse and noisy pairwise
comparison labels collected using crowdsourcing tools. Dif-
ferent from existing approaches which first remove outliers
by majority voting, followed by regression [4] or learning to
rank [5], we formulate a unified robust learning to rank
(URLR) framework to solve jointly both the outlier detection
and learning to rank problems. Critically, instead of detect-
ing outliers locally and independently at each pair by major-
ity voting, our outlier detection method operates globally,
integrating all local pairwise comparisons together to
minimise a cost that corresponds to global inconsistency
of ranking order. This enables us to identify those outliers
that receive majority votes but cause large global ranking
inconsistency and thus should be removed. Furthermore,
as a global method that aggregates comparisons across
different pairs, our method can operate with as few as
one comparison per pair, making our method much more
robust against the data sparsity problem compared to the
conventional majority voting approach that aggregates
comparisons for each pair in isolation. More specifically,
the proposed model generalises a partially penalised
LASSO optimisation or Huber-LASSO formulation [20],
[21], [22] from a robust statistical ranking formulation to
a robust learning to rank model, making it suitable for
SVP prediction given unseen images/videos. We also for-
mulate a regularisation path (RP) based solution to solve
this new formulation efficiently. Extensive experiments
are carried out on benchmark datasets including two
image and video interestingness datasets [4], [5] and two
relative attribute datasets [2]. The results demonstrate
that our method significantly outperforms the state-of-
the-art alternatives.

Fig. 1. Examples of pairwise comparisons of subjective visual properties.

1. This is also known as halo effect in psychology.
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2 RELATED WORK

2.1 Subjective Visual Properties

Subjective visual property prediction covers a large variety
of computer vision problems; it is thus beyond the scope of
this paper to present an exhaustive review here. Instead we
focus mainly on the image/video interestingness prediction
problem which share many characteristics with other SVP
prediction problem such as image quality [23], memorabil-
ity [24], and aesthetics [3] prediction.

2.2 Predicting Image and Video Interestingness

Early efforts on image interestingness prediction focus on
different aspects than interestingness as such, including
memorability [24] and aesthetics [3]. These SVPs are
related to interestingness but different. For instance, it is
found that memorability can have a low correlation with
interestingness—people often remember things that they
find uninteresting [4]. The work of Gygli et al. [4] is the
first systematic study of image interestingness. It shows
that three cues contribute the most to interestingness: aes-
thetics, unusualness/novelty and general preferences, the
last of which refers to the fact that people in general find
certain types of scenes more interesting than others, for
example outdoor-natural versus indoor-manmade. Differ-
ent features are then designed to represent these cues as
input to a prediction model. In comparison, video interest-
ingness has received much less attention, perhaps because
it is even harder to understand its meaning and contribut-
ing cues. Liu et al. [25] focus on key frames so essentially
treats it as an image interestingness problem, whilst [5] is
the first work that proposes benchmark video interesting-
ness datasets and evaluates different features for video
interestingness prediction.

Most earlier works cast the aesthetics or interestingness
prediction problem as a regression problem [3], [23], [24],
[25]. However, as discussed before, obtaining an absolute
value of interestingness for each data point is too subjective
and affected too much by unknown personal preference/
social background to be reliable. Therefore the most recent
two studies on image [4] and video [5] interestingness all
collect pairwise comparison data by crowdsourcing. Both
use majority voting to remove outliers first. After that the
prediction models differ—[4] converts pairwise compari-
sons into an absolute interestingness values and use a
regression model, whilst [5] employs rankSVM [10] to learn
a ranking function, with the estimated ranking score of an
unseen video used as the interestingness prediction. We
compare with both approaches in our experiments and
demonstrate that our unified robust learning to rank
approach is superior as we can remove outliers more
effectively—even if they correspond to comparisons receiv-
ing majority votes, thanks to its global formulation.

2.3 Relative Attributes

In a broader sense interestingness can be considered as one
type of relative attribute [6]. Attribute-based modelling [26],
[27] has gained popularity recently as a way to describe
instances and classes at an intermediate level of representa-
tion. Attributes are then used for various tasks including N-
shot and zero-shot transfer learning. Most previous studies

consider binary attributes [26], [27]. Relative attributes [6]
were recently proposed to learn a ranking function to pre-
dict relative semantic strength of visual attributes. Instead
of the original class-level attribute comparisons in [6], this
paper focuses on instance-level comparisons due to the
huge intra-class variations in real-world problems. With
instance-level pairwise comparisons, relative attributes
have been used for interactive image search [2], and semi-
supervised [28] or active learning [29], [30] of visual catego-
ries. However, no previous work addresses the problem of
annotation outliers except [2], which adopts the heuristic
majority voting strategy.

2.4 Learning from Noisy Paired Crowdsourced Data

Many large-scale computer vision problems rely on
human intelligence tasks (HIT) using crowdsourcing serv-
ices, e.g. AMT (Amazon Mechanical Turk) to collect anno-
tations. Many studies [13], [14], [31], [32] highlight the
necessity of validating the random or malicious labels/
workers and give filtering heuristics for data cleaning.
However, these are primarily based on majority voting
which requires a costly volume of redundant annotations,
and has no theoretical guarantee of solving the outlier
and sparsity problems. As a local (per-pair) filtering
method, majority voting does not respect global ordering
and even risks introducing additional inconsistency due
to the well-known Condorcet’s paradox in social choice
and voting theory [33]. Active learning [29], [30], [34] is
an another way to circumvent the Oðn2Þ pairwise label-
ling space. It actively poses specific requests to annotators
and learns from their feedback, rather than the ‘general’
pairwise comparisons discussed in this work. Besides
paired crowdsourced data, majority voting is more
widely used in crowdsourcing where multiple annotators
directly label instances, which attracted lots of attention
in the machine learning community [15], [16], [17], [18].
In contrast, our work focuses on pairwise comparisons
which are relatively easier for annotators in evaluating
the subjective visual properties [8].

2.5 Statistical Ranking and Learning to Rank

Statistical ranking has been widely studied in statistics and
computer science [8], [35], [36], [37]. However, statistical
ranking only concerns the ranking of the observed/training
data, but not learning to predict unseen data by learning
ranking functions. To learn ranking functions for applica-
tions such as interestingness prediction, a feature represen-
tation of the data points must be used as model input in
addition to the local ranking orders. This is addressed in
learning to rank which is widely studied in machine learn-
ing [38], [39], [40]. However, existing learning to rank works
do not explicitly model and remove outliers for robust
learning: a critical issue for learning from crowdsourced
data in practice. In this work, for the first time, we study the
problem of robust learning to rank given extremely noisy
and sparse crowdsourced pairwise labels. We show both
theoretically and experimentally that by solving both the
outlier detection and ranking prediction problems jointly,
we achieve better outlier detection than existing statistical
ranking methods and better ranking prediction than
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existing learning to rank method such as RankSVM without
outlier detection.

Our Contributions are threefold: (1) We propose a novel
robust learning to rank method for subjective visual prop-
erty prediction using noisy and sparse pairwise compari-
son/ranking labels as training data. (2) For the first time,
the problems of detecting outliers and estimating linear
ranking models are solved jointly in a unified framework.
(3) We demonstrate both theoretically and experimentally
that our method is superior to existing majority voting
based methods as well as statistical ranking based methods.
An earlier and preliminary version of this work is presented
in [41] which focused only on the image/video interesting-
ness prediction problem.

3 UNIFIED ROBUST LEARNING TO RANK

3.1 Problem Definition

We aim to learn a subjective visual property prediction
model from a set of sparse and noisy pairwise comparison
labels, each comparison corresponding to a local ranking
between a pair of images or videos. Suppose our training
set has N data points/instances represented by a feature

matrix F ¼ ½ffT
i �Ni¼1 2 RN�d, where ffi is a d-dimensional col-

umn low-level feature vector representing instance i. The
pairwise comparison labels (annotations collected using
crowdsourcing tools) can be naturally represented as a
directed comparison graph G ¼ V;Eð Þ with a node set

V ¼ if gNi¼1 corresponding to the N instances and an edge

set E ¼ feijg corresponding to the pairwise comparisons.

The pairwise comparison labels can be provided by mul-
tiple annotators. They are dichotomously saved: Suppose
annotator a gives a pairwise comparison for instance i and j
(i; j 2 V ). If a considers that the SVP of instance i is stron-
ger/more than that of j, we save ði; j; yaeijÞ and set yaeij ¼ 1.

If the opposite is the case, we save ðj; i; yaejiÞ and set yaeji ¼ 1.

All the pairwise comparisons between instances i and j are
then aggregated over all annotators who have cast a vote on
this pair; the results are represented as weij ¼

P
a½½yaeij ¼ 1��

which is the total number of votes on i over j for a specific
SVP, where ½½�� indicates the Iverson’s bracket notation, and
weji which is defined similarly. This gives an edge weight

vector ww ¼ ½weij � 2 R jE j where jEj is the number of edges.

Now the edge set can be represented as E ¼ feijjweij > 0g
and weij 2 R is the weight for the edge eij. In other words,

an edge eij: i ! j exists if weij > 0. The topology of the

graph is denoted by a flag indicator vector yy ¼ ½yeij � 2 R jE j

where each indicator yeij ¼ 1 indicates that there is an edge

between instances i to j regardless how many votes it car-
ries. Note that all the elements in yy have the value 1, and
their index eij gives the corresponding nodes in the graph.

Given the training data consisting of the feature matrix F
and the annotation graph G, there are two tasks:

1) Detecting and removing the outliers in the edge set E
ofG. To this end, we introduce a set of unknown var-

iables gg ¼ ½geij � 2 R jE j where each variable geij
indi-

cates whether the edge eij is an outlier. The outlier

detection problem thus becomes the problem of esti-
mating gg.

2) Estimating a prediction function for SVP. In this
work a linear model is considered due to its low
computational complexity, that is, given the low-
level feature ffx of a test instance x we use a linear

function fðxÞ ¼ bbTffx to predict its SVP, where bb is
the coefficient weight vector of the low-level feature
ffx. Note that all formulations can be easily updated
to use a non-linear function.

So far in the introduced notations three vectors share
indices: the flag indicator vector yy, the outlier variable vec-
tor gg and the edge weight vector ww. For notation conve-
nience, from now on we use yij, gij and wij to replace yeij ,

geij and weij respectively. As in most graph based model for-

mulations, we define C 2 R jE j �N as the incident matrix of
the directed graph G, where Ceiji ¼ �1=1 if the edge eij
enters/leaves vertex i.

Note that in an ideal case, one hopes that the votes
received on each pair are unanimous, e.g. wij > 0 and
wji ¼ 0; but often there are disagreements, i.e. we have both
wij > 0 and wji > 0. Assuming both cannot be true simul-
taneously, one of them will be an outlier. In this case, one is
the majority and the other minority which will be pruned
by the majority voting method. This is why majority voting
is a local outlier detection method and requires as many
votes per pair as possible to be effective (the wisdom of a
crowd).

3.2 Framework Formulation

In contrast to majority voting, we propose to prune outliers
globally and jointly with learning the SVP prediction func-
tion. To this end, the outlier variables gij for outlier detection
and the coefficient weight vector bb for SVP prediction are
estimated in a unified framework. Specifically, for each edge
eij 2 E, its corresponding flag indicator yij is modelled as

yij ¼ bbTffi � bbTffj þ gij þ "ij; (1)

where "ij � Nð0; s2Þ is the Gaussian noise with zero mean
and a variance s, and the outlier variable gij 2 R is assumed

to have a higher magnitude than s. For an edge eij, if yij is

not an outlier, we expect bbTffi � bbTffj should be approxi-

mately equal to yij, therefore we have gij ¼ 0. On the con-

trary, when the prediction of bbTffi � bbTffj differs greatly

from yij, we can explain yij as an outlier and compensate for
the discrepancy between the prediction and the annotation
with a nonzero value of gij. The only prior knowledge we

have on gij is that it is a sparse variable, i.e. in most cases

gij ¼ 0.

For the whole training set, Eq. (1) can be re-written in its
matrix form

yy ¼ CFbbþ gg þ ��; (2)

where yy ¼ yij
� � 2 R jE j , gg ¼ gij

� � 2 R jE j , �� ¼ "ij
� � 2 R jE j

and C 2 R jE j �N is the incident matrix of the annotation
graph G.

In order to estimate the jEj þ d unknown parameters (jEj
for gg and d for bb), we aim to minimise the discrepancy
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between the annotation yy and our prediction CFbbþ gg, as
well as keeping the outlier estimation gg sparse. Note that yy
only contains information about which pairs of instances
have received votes, but not how many. The discrepancy
thus needs to weighted by the number of votes received,

represented by the edge weight vector ww ¼ wij

� � 2 R jE j . To
that end, we put a weighted l2�loss on the discrepancy and
a sparsity enhancing penalty on the outlier variables. This
gives us the following cost function:

Lðbb; ggÞ ¼ 1

2
kyy� CFbb� ggk22;ww þ p�ðggÞ; (3)

where

kyy� CFbb� ggk22;ww ¼
X
eij2E

wijðyij � gij � bbTffi þ bbTffjÞ2;

and p�ðggÞ is the sparsity constraint on gg. With this cost func-
tion, our Unified Robust Learning to Rank framework iden-
tifies outliers globally by integrating all local pairwise
comparisons together. Note that in Eq. (3), the noise term ��
has been removed because the discrepancy is mainly caused
by outliers due to their larger magnitude.

Ideally the sparsity enhancing penalty term p�ðggÞ should
be a l0 regularisation term. However, for a tractable solu-
tion, a l1 regularisation term is used: p�ðggÞ ¼ �kggk1;ww ¼ �P

eij
wijjgijj, where � is a free parameter corresponding to

the weight for the regularisation term. With this l1 penalty
term, the cost function becomes convex:

Lðbb; ggÞ ¼ 1

2
k

ffiffiffiffiffiffi
W

p
ðyy� ggÞ �Xbbk22 þ �kggk1;ww; (4)

where X ¼ ffiffiffiffiffiffi
W

p
CF, W ¼ diagðwwÞ is the diagonal matrix of

ww and
ffiffiffiffiffiffi
W

p ¼ diagð ffiffiffiffi
ww

p Þ.
Setting @L

@bb
¼ 0, the problem of minimisation of the cost

function in (4) can be decomposed into the following two
subproblems:

1) Estimating the parameters bb of the prediction func-
tion fðxÞ:

b̂b ¼ ðXTXÞyXT
ffiffiffiffiffiffi
W

p
ðyy� ggÞ; (5)

Mathematically, the Moore-Penrose pseudo-inverse
of XTX is defined as ðXTXÞy ¼ lim

m!0
ððXTXÞT ðXT

XÞ þ mIÞ�1ðXTXÞT , where I is the identity matrix.
The scalar variable m is introduced to avoid numeri-
cal instability [42], and typically assumes a small
value.2 With the the introduction of m, Eq. (5)
becomes:

b̂b ¼ ðXTX þ mIÞ�1XT
ffiffiffiffiffiffi
W

p
ðyy� ggÞ: (6)

A standard solver for Eq. (6) has a OðjEjd2Þ computa-
tional complexity, which is almost linear with
respect to the size of the graph jEj if d � n. Faster
algorithms based on the Krylov iterative and alge-
braic multi-grid methods [43] can also be used.

2) Outlier detection:

ĝg ¼ argmingg
1

2
kðI �HÞ

ffiffiffiffiffiffi
W

p
ðyy� ggÞk22 þ �kggk1;ww (7)

¼ argmingg
1

2
k~yy� eXggÞk22 þ �kggk1;ww; (8)

where H ¼ XðXTXÞyXT is the hat matrix, eX ¼ ðI�
HÞ ffiffiffiffiffiffi

W
p

and ~yy ¼ ~Xyy. Eq. (7) is obtained by plugging

the solution b̂b back into Eq. (4).

3.3 Outlier Detection by Regularisation Path

From the formulations described above, it is clear that out-
lier detection by solving Eq. (8) is the key—once the outliers
are identified, the estimated ĝg can be used to substitute gg in
Eq. (5) and the estimation of the prediction function param-
eter bb becomes straightforward. Now let us focus on solving
Eq. (8) for outlier detection.

Note that solving Eq. (8) is essentially a LASSO (Least
Absolute Shrinkage and Selection Operator) [20] problem.
For a LASSO problem, tuning the regularisation parameter
� is notoriously difficult [44], [45], [46], [47]. In particular, in
our URLR framework, the � value directly decides the ratio
of outliers in the training set which is unknown. A number
of methods for determining � exist, but none is suitable for
our formulation:

1) Some heuristics rules on setting the value of � such
as � ¼ 2:5ŝ are popular in existing robust ranking
models such as the M-estimator [44], where ŝ is a
Gaussian variance set manually based on human
prior knowledge. However setting a constant � value
independent of dataset is far from optimal because
the ratio of outliers may vary for different crowd-
sourced datasets.

2) Cross validation is also not applicable here because
each edge eij is associated with a gij variable and any
held-out edge eij also has an associated unknown var-
iable gij. As a result, cross validation can only opti-

mise part of the sparse variables while leaving those
for the held-out validation set undetermined.

3) Data adaptive techniques such as Scaled LASSO [45]
and Square-Root LASSO [46] typically generate
over-estimates on the support set of outliers. More-
over, they rely on the homogeneous Gaussian noise
assumption which is often not valid in practice.

4) The other alternatives e.g. Akaike information crite-
rion (AIC) and Bayesian information criterion (BIC)
are often unstable in outlier detection LASSO prob-
lems [47].3

This inspires us to sequentially consider all available solu-
tions for all sparse variables along the regularisation path by
gradually decreasing the value of the regularisation parame-
ter � from1 to 0. Specifically, based on the piecewise-linear-
ity property of LASSO, a regularisation path can be efficiently

2. In this work, m is set to 0:001.

3. We found empirically that the model automatically selected by
BIC or AIC failed to detect any meaningful outliers in our experiments.
For details of the experiments and a discussion on the issue of deter-
mining the outlier ratio, please visit the project webpage at http://
www.eecs.qmul.ac.uk/~yf300/ranking/index.html
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computed by the R-package “glmnet” [48].4 When � ¼ 1, the
regularisation parameter will strongly penalise outlier detec-
tion: if any annotation is taken as an outlier, it will greatly
increase the value of the cost function in Eq. (8). When � is
changed from1 to 0, LASSO5will first select the variable sub-

set accounting for the highest deviations to the observations eX
in Eq. (8). These high deviations should be assigned higher
priority to represent the nonzero elements6 of gg of Eq. (2),
because gg compensates the discrepancy between annotation
and prediction. Based on this idea, we can order the edge set
E according to which nonzero gij appears first when � is

decreased from 1 to 0. In other words, if an edge eij whose
associated outlier variable ggij becomes nonzero at a larger �

value, it has a higher probability to be an outlier. Following
this order, we identify the top p% edge set Lp as the annota-
tion outliers. And its complementary set L1�p ¼ E n Lp are
the inliers. Therefore, the outcome of estimating gg using
Eq. (8) is a binary outlier indicator vector ff ¼ ½feij �:

feij ¼
1 eij 2 L1�p

0 eij 2 Lp;

�
where each element feij indicates whether the correspond-
ing edge eij is an outlier or not.

Now with the outlier indicator vector ff estimated using
regularisation path, instead of estimating bb by substituting
gg in Eq. (5) with an estimated ĝg, bb can be computed as

b̂b ¼ ðXTFX þ mIÞ�1XT
ffiffiffiffiffiffi
W

p
Fyy; (9)

where F ¼ diagðffÞ, that is, we use ff to ‘clean up’ yy before
estimating bb.

The pseudo-code of learning our URLR model is sum-
marised in Algorithm 1.

Algorithm 1. Learning a unified robust learning to rank
(URLR) model for SVP prediction

Input: A training dataset consisting of the feature matrix F
and the pairwise annotation graph G, and an outlier pruning
rate p%.
Output: Detected outliers ff and prediction model parameter bb.
1) Solve Eq. (8) using Regularisation Path;
2) Take the top p% pairs as outliers to obtain the outlier indica-

tor vector ff ;
3) Compute bb using Eq. (9).

3.4 Discussions

3.4.1 Advantage Over Majority Voting

The proposed URLR framework identifies outliers glob-
ally by integrating all local pairwise comparisons
together, in contrast to the local aggregation based major-
ity voting. Fig. 2a illustrates why our URLR framework is
advantageous over the local majority voting method for
outlier detection. Assume there are five images A� E

with five pairs of them compared three times each, and
the correct global ranking order of these five images in
terms of a specific SVP is A < B < C < D < E. Fig. 2a
shows that among the five compared pairs, majority vot-
ing can successfully identify four outlier cases: A > B,
B > C, C > D, and D > E, but not the fifth one E < A.
However when considered globally, it is clear that E < A
is an outlier because if we have A < B < C < D < E,
we can deduce A < E. Our formulation can detect this
tricky outlier. More specifically, if the estimated bb makes

bbTffA � bbTffE > 0, it has a small local inconsistency cost
for that minority vote edge A ! E. However, such bb

value will be ‘propagated’ to other images by using the
voting edges B ! A, C ! B, D ! C, and E ! D, which
are accumulated into a much bigger global inconsistency
with the annotation. This enables our model to detect
E ! A as an outlier, contrary to the majority voting deci-
sion. In particular, the majority voting will introduce a
loop comparison A < B < C < D < E < A which is
the well-known Condorcet’s paradox [19], [33].

We further give twomore extreme cases in Figs. 2b and 2c.
Due to the Condorcet’s paradox, in Fig. 2b the estimated bb

from majority voting, which removes A ! E, is even worse
than that from all annotation pairs which at least save the
correct annotation A ! E. Furthermore, Fig. 2c shows that
when each pair only receives votes in one direction, majority
voting will cease to work altogether, but our URLR can still
detect outliers by examining the global cost. This example
thus highlights the capability of URLR in coping with
extremely sparse pairwise comparison labels. In our experi-
ments (see Section 4), the advantage of URLR over majority
is validated on various SVP prediction problems.

3.4.2 Advantage over Robust Statistical Ranking

Our framework is closely related to Huber’s theory of
robust regression [44], which has been used for robust sta-
tistical ranking [53]. In contrast to learning to rank, robust
statistical ranking is only concerned with ranking a set of
training instances by integrating their (noisy) pairwise rank-
ings. No low-level feature representation of the instances is
used as robust ranking does not aim to learn a ranking pre-
diction function that can be applied to unseen test data. To
see the connection between URLR with robust ranking, con-
sider the Huber M-estimator [44] which aims to estimate the
optimal global ranking for a set of training instances by min-
imising the following cost function:

min
uu

X
i;j

wijr�ððui � ujÞ � yijÞ; (10)

Fig. 2. Better outlier detection can be achieved using our URLR frame-
work than majority voting. Green arrows/edges indicate correct annota-
tions, while red arrows are outliers. The numbers indicate the number of
votes received by each edge.

4. http://cran.r-project.org/web/packages/glmnet/glmnet.pdf
5. For a thorough discussion from a statistical perspective, please

see [47], [49], [50], [51].
6. This is related with LASSO for covariate selection in a graph.

Please see [52] for more details.
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where uu ¼ ½ui� 2 R jE j is the ranking score vector storing the
global ranking score of each training instance i. The Huber’s
loss function r�ðxÞ is defined as

r�ðxÞ ¼ x2=2; if jxj � �
�jxj � �2=2; if jxj > �:

�
(11)

Using this loss function, when jðui � ujÞ � yijj < �, the com-
parison is taken as a “good” one and penalised by an
l2�loss for Gaussian noise. Otherwise, it is regarded as a
sparse outlier and penalised by an l1�loss. It can be shown
[53] that robust ranking with Huber’s loss is equivalent to a
LASSO problem, which can been applied to joint robust
ranking and outlier detection [47]. Specifically, the global
ranking of the training instances and the outliers in the pair-
wise rankings can be estimated as

ûu; ĝg
� � ¼ min

uu;gg

1

2
ky� Cuu � ggk22;ww þ � k gg k1;ww (12)

¼ min
uu;gg

X
eij2E

wij
1

2
ðyij � gij � ðui � ujÞ

���� ����2þ�jgijj
" #

: (13)

The optimisation problem (12) is designed for solving the
robust ranking problem with Huber’s loss function, hence
called Huber-LASSO [53].

Our URLR can be considered as a generalisation of the
Huber-LASSO based robust ranking problem above. Com-
paring Eq. (12) with Eq. (3), it can be seen that the main dif-
ference between URLR and conventional robust ranking is
that in URLR the cost function has the low-level feature
matrixF computed from the training instances, and the pre-
diction function parameter bb, such that u ¼ Fbb. This is
because the objective of URLR is to predict SVP for unseen
test data. However, URLR and robust ranking do share one
thing in common—the ability to detect outliers in the train-
ing data based on a Huber-LASSO formulation. This means
that, as opposed to our unified framework with feature F,
one could design a two-step approach for learning to rank
by first identifying and removing outliers using Eq. (12), fol-
lowed by introducing the low-level feature matrix F and
prediction model parameter bb and estimating bb using
Eq. (9). We call this approach Huber-LASSO-FL based learn-
ing to rank which differs from URLR mainly in the way out-
liers are detected without considering low level features.

Next we show that there is a critical theoretical advan-
tage of URLR over conventional Huber-LASSO in detecting
outliers from the training instances. This is due to the differ-
ence in the projection space for estimating gg which is
denoted as G. To explain this point, we decompose X in
Eq. (8) by Singular Value Decomposition (SVD),

X ¼ USVT ; (14)

where U ¼ ½U1;U2� with U1 being an orthogonal basis of the
column space ofX and U2 an orthogonal basis of its comple-

ment. Therefore, due to the orthogonality UTU ¼ I and

UT
2X ¼ 0, we can simplify Eq. (8) into

ĝg ¼ argmin
gg

kUT
2 yy� UT

2 ggk22;ww þ �kggk1;ww: (15)

The SVD orthogonally projects yy onto the column space
of X and its complement, while U1 is an orthogonal basis of
the column space X and U2 is the orthogonal basis of its

complement G (i.e., the kernel space of XT ). With the SVD,
we can now compute the outliers ĝg by solving Eq. (15)
which again is a LASSO problem [42], where outliers pro-

vide sparse approximations of projection UT
2 yy. We can thus

compare dimensions of the projection spaces of URLR and
Huber-LASSO-FL:

� Robust ranking based on the featureless Huber-
LASSO-FL7: to see the dimension of the projection
space G, i.e., the space of cyclic rankings [19], [53],
we can perform a similar SVD operation and rewrite
Eq. (12) in the same form as Eq. (15), but this time

we have X ¼ ffiffiffiffiffiffi
W

p
C;U1 2 R Ej j�ð jV j �1Þ and U2 2

R Ej j�ð Ej j� Vj jþ1Þ. So the dimension of G for Huber-
LASSO-FL is dimðGÞ ¼ Ej j � Vj j þ 1.

� URLR: in contrast we haveX ¼ ffiffiffiffiffiffi
W

p
CF;U1 2 R jE j �d

and U2 2 R Ej j�ð Ej j�dÞ. So the dimension of G for URLR
is dimðGÞ ¼ Ej j � d.

From the above analysis we can see that given a very sparse

graph with jEj � jV j, the projection space G for Huber-

LASSO-FL will have a dimension ( Ej j � Vj j þ 1) too small to

be effective for detecting outliers. In contrast, by exploiting a

low dimensional (d � jV j) feature representation of the origi-

nal node space, URLR can enlarge the projection space to

that of dimension Ej j � d. Our URLR is thus able to enlarges

its outlier detection projection space G. As a result our URLR

can better identify outliers, especially for sparse pairwise anno-

tation graphs. In general, this advantage exists when the fea-

ture dimension d is smaller than the number of training

instance Vj j ¼ N , and the smaller the value of d, the bigger the
advantage over Huber-LASSO. In practice, given a large train-

ing set we typically have d � Vj j. On the other hand, when the

number of instances is small, and each instance is represented

by a high-dimensional feature vector, we can always reduce

the feature dimension using techniques such as PCA to make

sure that d � Vj j. This theoretical advantage of URLR over

conventional Huber-LASSO in outlier detection is validated

experimentally in Section 4.

3.4.3 Regularisation on bb

It is worth mentioning that in the cost function of URLR
(Eq. (3)), there are two sets of variables to be estimated, gg and
bb, but only one l1 regularisation term on gg to enforce sparsity.
When the dimensionality of bb (i.e., d) is high, one would
expect to see a l2 regularisation term on bb (e.g. ridge regres-
sion) due to the fact that the coefficients of highly correlated
low-level features can be poorly estimated and exhibit high
variance without imposing a proper size constraint on the
coefficients [42]. The reason we do not include such a
regularisation term is because, as mentioned above, using
URLR we need to make sure the low-level feature space
dimensionality d is low, which means that the dimensional-
ity of bb is also low, making the regularisation term bb redun-
dant. This leads to the applicability of much simpler solvers

7. We assume that the graph is connected, that is, Ej j 	 Vj j � 1; we
thus have rankðCÞ ¼ Vj j � 1.
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and we show empirically in the next section that satisfactory
results can be obtainedwith this simplification.

4 EXPERIMENTS

Experiments were carried out on five benchmark datasets
(see Table 1) which fall into three categories: (1) experiments
on estimating subjective visual properties that are useful on
their own including image (Section 4.1) and video interest-
ingness (Section 4.2), (2) experiments on estimating SVPs as
relative attributes for visual recognition (Section 4.3), and
(3) experiments on human age estimation from face images
(Section 4.4). The third set of experiments can be considered
as synthetic experiments—human age is not a subjective
visual property although it is ambiguous and poses a prob-
lem even for humans [56]. However, as ground truth is
available, this set of experiments are designed to gain
insights into how different SVP prediction models work.

4.1 Image Interestingness Prediction

4.1.1 Datasets

The image interestingness dataset was first introduced in
[24] for studying memorability. It was later re-annotated as
an image interestingness dataset by [4]. It consists of 2; 222
images. Each was represented as a 915 dimensional attri-
bute8 feature vector [4], [24] such as central object, unusual
scene and so on. 16; 000 pairwise comparisons were col-
lected by [4] using AMT and used as annotation. On aver-
age, each image is viewed and compared with 11.9 other
images, resulting a total of 16,000 pairwise labels.9

4.1.2 Settings

1;000 images were randomly selected for training and the
remaining 1; 222 for testing. All the experiments were
repeated 10 times with different random training/test splits
to reduce variance. The pruning rate pwas set to 20 percent.
We also varied the number of annotated pairs used to test
how well each compared method copes with increasing
annotation sparsity.

4.1.3 Evaluation Metrics

For both image and video interestingness prediction, Ken-
dall tau rank distance was employed to measure the

percentage of pairwise mismatches between the predicted
ranking order for each pair of test data using their predic-
tion/ranking function scores, and the ground truth rank-
ing provided by [4] and [5] respectively. Larger Kendall
tau rank distance means lower quality of the ranking
order predicted.

4.1.4 Competitors

We compare our method (URLR) with four competitors.

1) Maj-Vot-1 [5]: this method uses majority voting for
outlier pruning and rankSVM for learning to rank.

2) Maj-Vot-2 [4]: this method also first removes outliers
by majority voting. After that, the fraction of selec-
tions by the pairwise comparisons for each data
point is used as an absolute interestingness score
and a regression model is then learned for predic-
tion. Note that Maj-Vot-2 was only compared in the
experiments on image and video interestingness pre-
diction, since only these two datasets have enough
dense annotations forMaj-Vot-2.

3) Huber-LASSO-FL: robust statistical ranking that per-
forms outlier detection using the conventional fea-
tureless Huber-LASSO as described in Section 3.4.2,
followed by estimating bb using Eq. (9).

4) Raw: our URLR model without outlier detection, that
is, all annotations are used to estimate bb.

4.1.5 Comparative Results

The interestingness prediction performance of the various
models are evaluated while varying the amount of pairwise
annotation used. The results are shown in Fig. 3 (left). It
shows clearly that our URLR significantly outperforms the
four alternatives for a wide range of annotation density.
This validates the effectiveness of our method. In particular,
it can be observed that: (1) The improvement over Maj-
Vot-1 [5] and Maj-Vot-2 [4] demonstrates the superior out-
lier detection ability of URLR due to global rather than local
outlier detection. (2) URLR is superior to Huber-LASSO-FL
because the joint outlier detection and ranking prediction
framework of URLR enables the enlargement of the projec-
tion space G for gg (see Section 3.4.2), resulting in better out-
lier detection performance. (3) The performance of Maj-Vot-
2 [4] is the worst among all methods compared, particularly
so given sparser annotation. This is not surprising—in order
to get an reliable absolute interestingness value, dozens or
even hundreds of comparisons per image are required, a
condition not met by this dataset. (4) The performance of

TABLE 1
Dataset Summary

Dataset No. pairs No. img/video Feature Dim. No. classes

Image Interestingness [24] 16; 000 2,222 932 (150) 1
Video Interestingness [5] 60; 000 420 1,000 (60) 14
PubFig [2], [54] 2; 616 772 557 (100) 8
Scene [2], [55] 1; 378 2,688 512 (100) 8
FG-Net Face Age Dataset [56] – 1,002 55 –

We use the original features to learn the ranking model (Eq. (9)) and reduce the feature dimension (values in brackets) using Kernel PCA [57] to
improve outlier detection (Eq. (8)) by enlarging the projection space of gg.

8. We delete eight attribute features from the original feature vector
in [4], [24] such as “attractive” because they are highly correlated with
image interestingness.

9. On average, for each labelled pair, around 80 percent of the anno-
tations agree with one ranking order and 20 percent the other.
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Huber-LASSO-FL is also better thanMaj-Vot-1 andMaj-Vot-2
suggesting even a weaker global outlier detection approach
is better then the majority voting based local one. (5) Inter-
estingly even the baseline method Raw gives a comparable
result to Maj-Vot-1 and Maj-Vot-2 which suggests that just
using all annotations without discrimination in a global cost
function (Eq. (4)) is as effective as majority voting.10

Fig. 3 (right) evaluates how the performances of URLR
and Huber-LASSO-FL are affected by the pruning rate p. It
can be seen that the performance of URLR is improving
with an increasing pruning rate. This means that our URLR
can keep on detecting true positive outliers. The gap
between URLR and Huber-LASSO-FL gets bigger when
more comparisons are pruned showing Huber-LASSO-FL
stops detecting outliers much earlier on. However, when
the pruning rate is over 55 percent, since most outliers have
been removed, inliers start to be pruned, leading to poorer
performance.

4.1.6 Qualitative Results

Some examples of outlier detection using URLR are shown
in Fig. 4. It can be seen that those in the green boxes are
clearly outliers and are detected correctly by our URLR. The
failure cases are interesting. For example, in the bottom
case, ground truth indicates that the woman sitting on a
bench is more interesting than the nice beach image, whilst
our URLR predicts otherwise. The odd facial appearance on

that woman or the fact that she is holding a camera could be
the reason why this image is considered to be more interest-
ing than the otherwise more visually appealing beach
image. However, it is unlikely that the features used by
URLR are powerful enough to describe such fine appear-
ance details.

4.2 Video Interestingness Prediction

4.2.1 Datasets

The video interestingness dataset is the YouTube interest-
ingness dataset introduced in [5]. It contains 14 categories of
advertisement videos (e.g. ‘food’ and ‘digital products’),
each of which has 30 videos. 10 � 15 annotators were asked
to give complete interesting comparisons for all the videos
in each category. So the original annotations are noisy but
not sparse. We used bag-of-words of Scale Invariant Feature
Transform (SIFT) and Mel-Frequency Cepstral Coefficient
(MFCC) as the feature representation which were shown to
be effective in [5] for predicting video interestingness.

4.2.2 Experimental Settings

Because comparing videos across different categories is not
very meaningful, we followed the same settings as in [5] and
only compared the interestingness of videos within the same
category. Specifically, from each category we used 20 videos
and their paired comparisons for training and the remaining
10 videos for testing. The experiments were repeated for 10
rounds and the averaged results are reported.

Since MFCC and SIFT are bag-of-words features, we
employed x2 kernel to compute and combine the features.

To facilitate the computation, the x2 kernel is approximated
by additive kernel of explicit feature mapping [58]. To make
the results of this dataset more comparable to those in [5],

Fig. 3. Image interestingness prediction comparative evaluation. Smaller Kendall tau distance means better performance. The mean and standard
deviation of each method over 10 trials are shown in the plots.

Fig. 4. Qualitative examples of outliers detected by URLR. In each box, there are two images. The left image was annotated as more interesting than
the right. Success cases (green boxes) show true positive outliers detected by URLR (i.e., right images are more interesting according to the ground
truth). Two failure cases are shown in red boxes (URLR thinks the images on the right are more interesting but the ground truth agrees with the
annotation).

10. One intuitive explanation for this is that given a pair of data with
multiple contradictory votes, using Raw, both the correct and incorrect
votes contribute to the learned model. In contrast, with Maj-Vot, one of
them is eliminated, effectively amplifying the other’s contribution in
comparison to Raw. When the ratio of outliers gets higher, Maj-Vot will
make more mistakes in eliminating the correct votes. As a result, its
performance drops to that of Raw, and eventually falls below it.
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we used rankSVM model to replace Eq. (9) as the ranking
model. As in the image interestingness experiments, we
used Kendal tau rank distance as the evaluation metric,
while we find that the same results can be obtained if the
prediction accuracy in [5] is used. The pruning rate was
again set to 20 percent.

4.2.3 Comparative Results

Fig. 5a compares the interestingness prediction methods
given varying amounts of annotation, and Fig. 5b shows the
per category performance. The results show that all the
observations we had for the image interestingness predic-
tion experiment still hold here, and across all categories.
However in general the gaps between our URLR and the
alternatives are smaller as this dataset is densely annotated.
In particular the performance of Huber-LASSO-FL is much
closer to our URLR now. This is because the advantage of
URLR over Huber-LASSO-FL is stronger when jEj is close to
jV j. In this experiment, jEj (1,000 s) is much greater than jV j
(20) and the advantage of enlarging the projection space G
for gg (see Section 3.4.2) diminishes.

4.2.4 Qualitative Results

Some outlier detection examples are shown in Fig. 6. In the
two successful detection examples, the bottom videos are
clearly more interesting than the top ones, because they (1)
have a plot, sometimes with a twist, and (2) are accompanied
by popular songs in the background and/or conversations.

Note that in both cases, majority voting would consider
them inliners. The failure case is a hard one: both videos
have cartoon characters, some plot, some conversation, and
similar music in the background. This thus corresponds to a
truly ambiguous case which can go either way.

4.3 Relative Attributes Prediction

4.3.1 Datasets

The PubFig [54] and Scene [55] datasets are two relative
attribute datasets. PubFig contains 772 images from eight
people and 11 attributes (‘smiling’, ‘round face’, etc.). Scene
[55] consists of 2; 688 images from eight categories and six
attributes (‘openness’, ‘natrual’ etc.). Pairwise attribute
annotation was collected by Amazon Mechanical Turk [2].
Each pair was labelled by five workers and majority vote
was used in [2] to average the comparisons for each pair.11

A total of 241 and 240 training images for PubFig and Scene
respectively were labelled (i.e., compared with at least
another image). The average number of compared pairs per
attribute were 418 and 426 respectively, meaning most
images were only compared with one or two other images.
The annotations for both datasets were thus extremely
sparse. GIST and colour histogram features were used for
PubFig, and GIST alone for Scene. Each image also belongs
to a class (different celebrities or scene types). These

Fig. 5. Video interestingness prediction comparative evaluation.

Fig. 6. Qualitative examples of video interestingness outlier detection. For each pair, the top video was annotated as more interesting than the bottom.
Green boxes indicate the annotations are correctly detected as outliers by our URLR and red box indicates a failure case (false positive). All six vid-
eos are from the ‘food’ category.

11. Thanks to the authors of [2] we have all the the raw pairs data
before majority voting.
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datasets were designed for classification, with the predicted
relative attribute scores used as image representation.

4.3.2 Experimental Settings

We evaluated two different image classification tasks: multi-
class classification where samples from all classes were
available for training and zero-shot transfer learning where
one class was held out during training (a different class was
used in each trial with the result averaged). Our experiment
setting was similar to that in [6], except that image-level,
rather than class-level pairwise comparisons were used.
Two settings were used with different amounts of annota-
tion noise:

� Orig: This was the original setting with the pairwise
annotations used as they were.

� Orig+synth: By visual inspection, there were limited
annotation outliers in these datasets, perhaps
because these relative attributes are less subjective
compared to interestingness. To simulate more chal-
lenging situations, we added 150 random compari-
sons for each attribute, many of which would
correspond to outliers. This will lead to around 20
percent extra outliers.

The pruning rate was set to 7 percent for the original
datasets (Orig) and 27 percent for the dataset with addi-
tional outliers inserted for all attributes of both datasets
(Orig+synth).

4.3.3 Evaluation Metrics

For Scene and Pubfig datasets, relative attributes were very
sparsely collected and their prediction performance is thus
evaluated indirectly by image classification accuracy with
the predicted relative attributes as image representation.
Note that for image classification there is ground truth and
its accuracy is clearly dependent on the relative attribute
prediction accuracy. For both datasets, we employed the
method in [6] to compute the image classification accuracy.

4.3.4 Comparative Results

Without the ground truth of relative attribute values, dif-
ferent models were evaluated indirectly via image

classification accuracy in Fig. 7. The following observations
can be made: (1) Our URLR always outperforms Huber-
LASSO-FL, Maj-Vot-1 and Raw for all experiment settings.
The improvement is more significant when the data con-
tain more errors (Orig+synth). (2) The performance of other
methods is in general consistent to what we observed in
the image and video interestingness experiments: Huber-
LASSO-FL is better than Maj-Vot-1 and Raw often gives
better results than majority voting. (3) For PubFig, Maj-
Vot-1 [5] is better than Raw given more outliers, but it is
not the case for Scene. This is probably because the annota-
tors were more familiar with the celebrity faces in PubFig
and hence their attributes than those in Scene. Conse-
quently there should be more subjective/intentional errors
for Scene, causing majority voting to choose wrong local
ranking orders (e.g. some people are unsure how to com-
pare the relative values of the ‘diagonal plane’ attribute for
two images). These majority voting + outlier cases can
only be rectified by using a global approach such as our
URLR, and Huber-LASSO-FL to a lesser extent.

4.3.5 Qualitative Results

Fig. 8 gives some examples of the pruned pairs for both
datasets using URLR. In the success cases, the left images
were (incorrectly) annotated to have more of the attribute
than the right ones. However, they are either wrong or too
ambiguous to give consistent answers, and as such are det-
rimental to learning to rank. A number of failure cases (false
positive pairs identified by URLR) are also shown. Some of
them are caused by unique view point (e.g. Hugh Laurie’s
mouth is not visible, so it is hard to tell who smiles more;
the building and the street scene are too zoomed in com-
pared to most other samples); others are caused by the
weak feature representation, e.g. in the ‘male’ attribute
example, the colour and GIST features are not discrimina-
tive enough for judging which of the two men has more
‘male’ attribute.

4.3.6 Running Cost

Our algorithm is very efficient with a unified framework
where all outliers are pruned simultaneously and the rank-
ing function estimation has a closed form solution. Using

Fig. 7. Relative attribute performance evaluated indirectly as image classification rate (chance = 0.125).
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URLR on PubFig, it took only 1 minutes to prune 240 images
with 10,722 comparisons and learn the ranking function for
attribute prediction on a PC with four 3.3 GHz CPU cores
and 8 GB memory.

4.4 Human Age Prediction from Face Images

In this experiment, we consider age as a subjective visual
property of a face. This is partially true—for many people,
given a face image predicting the person’s age can be sub-
jective. The key difference between this and the other SVPs
evaluated so far is that we do have the ground truth, i.e., the
person’s age when the picture was taken. This enables us to
perform in-depth evaluation of the significance of our
URLR framework over the alternatives on various factors
such as annotation sparsity, and outlier ratio (we now know
the exact ratio). Outlier detection accuracy can also now be
measured directly.

4.4.1 Dataset

The FG-NET image age dataset12 was employed which con-
tains 1;002 images of 82 individuals labelled with ground
truth ages ranging from 0 to 69. The training set is com-
posed of the images of 41 randomly selected people and the
rest used as the test set. All experiments were repeated 10
times with different training/testing splits to reduce vari-
ability. Each image was represented by a 55 dimension vec-
tor extracted by active appearance models (AAM) [56].

4.4.2 Crowdsourcing Errors

We used the ground truth age to generate the pairwise com-
parisons without any error. Errors were then synthesised
according to human error patterns estimated by data col-
lected by an online pilot study13: 4; 000 pairwise image com-
parisons from 20 willingly participating “good” workers
were collected as unintentional errors. So we assume they are
not contributing random or malicious annotations. Thus the
errors of these pairwise comparisons come from the natural
data ambiguity. The human unintentional age error pattern
was built by fitting the error rate against true age difference
between collected pairs. As expected, humans are more
error-prone for smaller age difference. Specifically, we fit
quadratic polynomial function to model relation of age dif-
ference of two samples towards the chance of making an
unintentional error. We then used this error pattern to gen-
erate unintentional errors. Intentional errors were introduced

by ‘bad’ workers who provided random pairwise labels.
This was easily simulated by adding random comparisons.
In practice, human errors in crowdsourcing experiments
can be a mixture of both types. Thus two settings were con-
sidered: Unint.: errors were generated following the esti-
mated human unintentional error model resulting in
around 10 percent errors. Unint.+Int.: random comparisons
were added on top of Unint., giving an error ratio of around
25 percent, unless otherwise stated. Since the ground-truth
age of each face image is known to us, we can give an upper
bound for all the compared methods by using ground-truth
age of training data to generate a set of pairwise compari-
sons. This outlier-free dataset is then used to learn a kernel
ridge regression with Gaussian kernel. This ground-truth
data trained model is denoted as GT.

4.4.3 Quantitative Results

Four experiments were conducted using different settings
to show the effectiveness of our URLR method
quantitatively.

1) URLR vs. Huber-LASSO-FL. In this experiment, 300
training images and 600 unique comparisons were
randomly sampled from the training set. Fig. 9
shows that URLR and Huber-LASSO-FL improve
over Raw indicating that outliers are effectively
pruned using both global outlier detection methods.
Both methods are robust to low error rate (Fig. 9
Left: 10 percent in Unint.) and are fairly close to
GT, whilst the performance of URLR is significantly
better than that of Huber-LASSO-FL given high
error ratio (Fig. 9 Right: 25 percent in Unint.+Int.)
because of the using low-level feature representation
to increase the dimension of projection space

Fig. 8. Qualitative results on image relative attribute prediction.

Fig. 9. Comparing URLR and Huber-LASSO-FL on ranking prediction
under two error settings. Note that the ranking prediction accuracy is
measured using Kendall tau rank correlation which is very similar to Ken-
dall tau distance (see [59]). With rank correlation, the higher the value
the better the performance.

12. http://www.fgnet.rsunit.com/
13. http://www.eecs.qmul.ac.uk/~yf300/survey4/

574 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 38, NO. 3, MARCH 2016



dimension for gg from 301 for Huber-LASSO-FL to 546
for URLR (see Section 3.4.2). This result again vali-
dates our analysis that higher dimðGÞ leads to better
chance of identifying outliers correctly. It is noted
that in Fig. 9(Right), given 25 percent outliers, the
result indeed peaks when p is around 25; impor-
tantly, it stays flat when up to 50 percent of the anno-
tations are pruned.

2) Comparison with Maj-Vot-1. Given the same data but
each pair compared by five workers (instead of 1)
under the Unint.+Int. error condition, Fig. 10 shows
thatMaj-Vot-1 beats Raw. This shows that for relative
dense graph, majority voting is still a good strategy
of removing some outliers and improves the predic-
tion accuracy. However, URLR outperforms Maj-
Vot-1 after the pruning rate passes 10 percent. This
demonstrates that aggregating all paired compari-
sons globally for outlier pruning is more effective
than aggregating them locally for each edge as done
by majority voting.

3) Effects of error ratio. We used the Unint.+Int. error
model to vary the amount of random comparisons
and simulate different amounts of errors in 10 sam-
pled graphs from 300 training images and 2; 000
unique sampled pairs from the training images. The
pruning rate was fixed at 25 percent. Fig. 11 shows
that URLR remains effective even when the true
error ratio reaches as high as 35 percent. This demon-
strates that although a sparse outlier model is
assumed, our model can deal with non-sparse out-
liers. It also shows that URLR consistently outper-
forms the alternative models especially when the
error/outlier ratio is high.

4.4.4 What Are Pruned and in What Order?

The effectiveness of the employed regularisation path
method for outlier detection can be examined as � decreases

to produce a ranked list for all pairwise comparisons
according to the outlier probability. Fig. 12 shows the rela-
tionship between the pruning order (i.e., which pair is
pruned first) and ground truth age difference and illus-
trated by examples. It can be seen that overall outliers with
larger age difference tend to be pruned first. This means
that even with a conservative pruning rate, obvious outliers
(potentially causing more performance degradation in
learning) can be reliably pruned by our model.

5 CONCLUSIONS AND FUTURE WORK

We have proposed a novel unified robust learning to rank
framework for predicting subjective visual properties from
images and videos. The key advantage of our method over
the existing majority voting based approaches is that we can
detect outliers globally by minimising a global ranking incon-
sistency cost. The joint outlier detection and feature based
rank prediction formulation also provides our model with an
advantage over the conventional robust ranking methods
without features for outlier detection: it can be applied with a
large number of candidates in comparison but a sparse sam-
pling in crowdsourcing. The effectiveness of our model in
comparison with state-of-the-art alternatives has been vali-
dated on the tasks of image and video interestingness predic-
tion and predicting relative attributes for visual recognition.
Its effectiveness for outlier detection has also been evaluated
in depth in the human age estimation experiments.

By definition subjective visual properties are person-
dependent. When our model is learned using pairwise
labels collected from many people, we are essentially learn-
ing consensus—given a new data point the model aims to
predict its SVP value that can be agreed upon by most peo-
ple. However, the predicted consensual SVP value could be
meaningless for a specific person when his/her taste/
understanding of the SVP is completely different to that of
most others. How to learn a person-specific SVP prediction
model is thus part of the on-going work. Note that our
model is only one of the possible solutions to inferring
global ranking from pairwise comparisons. Other models
exist. In particular, one widely studied alternative is the
(Bradley-Terry-Luce (BTL) model [60], [61], [62]), which
aggregates the ranking scores of pairwise comparisons to
infer a global ranking by maximum likelihood estimation.
The BTL model is introduced to describe the probabilities of
the possible outcomes when individuals are judged against
one another in pairs [60]. It is primarily designed to incorpo-
rate contextual information in the global ranking model. We
found that directly applying the BTL model to our SVP

Fig. 10. Comparing URLR and Huber-LASSO-FL against majority voting
(five comparisons per pair).

Fig. 11. Effect of error ratio. Left: outlier detection performance mea-
sured by area under ROC curve (AUC). Right: rank prediction perfor-
mance measured by rank correlation.

Fig. 12. Relationship between the pruning order and actual age
difference for URLR.
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prediction task leads to much inferior performance because
it does not explicitly detect and remove outliers. However,
it is possible to integrate it into our framework to make
it more robust against outliers and sparse labels whilst pre-
serving its ability to take advantage of contextual informa-
tion. Other new directions include extending the presented
work to other applications where noisy pairwise labels
exist, both in vision such as image denoising [63], iterative
search and active learning of visual categories [30], and in
other fields such as statistics and economics [19].
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