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ABSTRACT
In action recognition, one of the most important challenges is
to jointly utilize the texture and motion information as well
as capturing the long-term dependence of various common
and action-specific postures. Motivated by this fact, this pa-
per proposes Temporal Attentive Network (TAN) for action
recognition. The key idea in TAN is that not all postures,
each of which represented by a small collection of consecu-
tive frames, contribute equally to the successful recognition
of an action. As a result, TAN incorporates two separate spa-
tial and temporal streams into one network. Information in
the two streams is partially shared so that discriminative spa-
tiotemporal features can be extracted to characterize various
postures in an action. Moreover, a temporal attention mech-
anism is introduced in the form of Long-Short Term Mem-
ory (LSTM) network. With this mechanism, features from
the action-specific postures can be emphasized, while com-
mon postures shared by many different actions will be ig-
nored to some extent. By jointly using such spatial and tem-
poral information as well as attentive cues in a single network,
TAN achieves impressive performance on two public datasets,
HMDB51 and UCF101, with accuracy scores of 72.5% and
94.1%, respectively.

Index Terms— Action Recognition, Temporal Attention,
Two-stream Network, CNNs, LSTM

1. INTRODUCTION

Action recognition is one of the most challenging tasks in
the areas of multimedia and computer vision, which aims at
categorizing actions or behaviours of one or several persons
described by a short video sequence into some predefined
semantic concepts. By successfully recognizing various ac-
tions, many innovative applications such as security surveil-
lance [1, 2], image/video captioning [3], video tagging[4] and
automated driving [5, 6] can be developed to further facilitate
the booming of the multimedia industry.

For the human-being, various spatial and temporal fea-
tures like color, texture and motion, as well as the cogni-

Corresponding author: Yonghong Tian (yhtian@pku.edu.cn) and
Yaowei Wang (yaoweiwang@bit.edu.cn).

Fig. 1. An action may contain action-specific and common
postures. Capturing the action-specific postures (marked in
red) and ignoring the common ones may help to characterize
and recognize an action.

tive visual mechanisms like selective attention and working
memory, can be simultaneously involved to correctly recog-
nize an action. In classic action recognition models, an action
can be identified by heuristically designed spatiotemporal fea-
tures and shallow learning approaches [7, 8]. For example,
Wang et al. [9] first extracted dense trajectories by sampling
and tracking dense points from each frame at multiple scales.
Hand-crafted features at each point were extracted and en-
coded to derive the final representation for a video to recog-
nize the actions it contains. However, such hand-crafted fea-
tures may have difficulties in representing long-range actions
(e.g., people hovering and slow walking).

To obtain better features, many approaches [10, 11, 10,
12, 13] adopted CNNs for learning representations and rec-
ognizing actions. In [14], Simonyan et al.proposed the two-
stream ConvNets for action recognition. Their model first ex-
tracted the spatial and temporal features with two standalone
CNNs, which were denoted as two streams. Although their
model successfully recognizes some types of actions, its im-
provement against classic models with heuristic features are
not as high as expected. This may be caused by the fact
that spatial and temporal features are inherently correlated in
defining an action. It may be inappropriate to utilize them sep-
arately in different models for action recognition. Although
many ways [14, 10] of fusing spatial and temporal streams
have been tested, the long-term dependencies between vari-
ous postures, as well as their importance in recognizing an
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action, are not put into consideration. Actually, such depen-
dencies and importance of gestures contain useful cues that
depict what is unique in an action and how to recognize it.

To address this problem, many approaches introduce the
cognitive visual mechanisms such as visual attention [15, 16,
17] and working memory [18, 19] into the action recogni-
tion models. For example, Wu et al. [20] used spatial at-
tention to regularize the usage of features from different lay-
ers in CNNs. Yue-Hei et al. [21] and Donahue et al. [22]
proposed their own recurrent networks respectively by con-
necting Long-Short Term Memory network (LSTM) [18] to
CNNs. However, all postures are equally treated in their net-
works, while we show in Fig. 1 some action-specific postures
may be more important than the common postures shared by
many actions in distinguishing one action from the others. In
other words, action recognition needs to incorporate both the
temporal attention and the working memory mechanism so
as to not only describes the long-term dependencies but also
estimates their importance to the recognition process.

Inspired by the pros and cons of previous works, this
paper proposes the Temporal Attentive Network (TAN) that
aims at jointly training the spatial and temporal streams with
the assistant of temporal attention mechanism. In TAN, two
separate spatial and temporal streams are integrated into one
network. Information in the two streams is partially shared,
which, after the training process, can extract discriminative
spatiotemporal features that can well characterize various
postures in an action. Moreover, we explore several ways
of incorporating the attention mechanisms into action recog-
nition, in which we find the temporal attention, introduced
by implementing a Long-Short Term Memory (LSTM) net-
work, may be an appropriate way. With the temporal attention
mechanism, features from the action-specific postures can be
emphasized, while common postures shared by many differ-
ent actions will be ignored to some extent. By jointly using
such spatial and temporal information as well as emphasizing
the most discriminative frames (postures) in a single network,
TAN achieves impressive performance on two public datasets.

Our main contributions are summarized as follows: 1) We
propose a temporal attentive network for action recognition,
which can extract effective spatiotemporal features from the
most discriminative postures; 2) We investigate several ways
to incorporate attention into action recognition and find that
temporal attention implemented by LSTM may be among the
most appropriate choices. Such a finding can be useful to the
future development of such attentive networks; 3) We conduct
extensive experiments to validate the effectiveness of the pro-
posed approach, in which TAN achieve state-of-the-art per-
formances on two benchmark dataset.

2. OUR APPROACH

In this section, we give detailed descriptions of performing
action recognition with the proposed Temporal Attentive Net-

Fig. 2. The framework of the proposed Temporal Attentive
Network.

works. Specifically, we first introduce the basic concepts in
the framework of Temporal Attentive Networks. Then, we
study the good practices in learning joint network. Finally,
we describe the testing details of the learned joint network.

2.1. Temporal Attentive Network

The proposed network is shown in Fig. 2. In TAN, there are
two branches which aim at processing frame and optical flow
fields. The input images will pass through CNNs to learn
texture representation. The outputs of CNNs are then fed into
LSTMs to learn the temporal description. The outputs of the
last LSTM layer in spatial branch are denoted (h1, h2, ..., hT )
and the outputs of the last LSTM layer of temporal branch are
denoted (g1, g2, ..., gT ). First, we use two small networks to
get the global state. We define:

mij = w′
1hi + w′

2si + w′
3gj + w′

4tj (1)
nkl = w′

5gk + w′
6tk + w′

7hl + w′
8sl (2)

where matrices w′
1, w′

2, · · · , w′
8 are the trainable parameters,

si is the cell state of spatial branch LSTM and tj is the cell
state of temporal branch LSTM. Both networks take current
outputs and cell states of two branches as inputs. In this way,
mij and nkl are able to see history state, texture state and
motion state.

Based on the current global state, we want the network to
learn the importance of each frame.

eij = vT tanh(mij) , fkl = uT tanh(nkl) (3)

where vectors v and u are the trainable parameters. We apply
hyperbolic tangent nonlinearity to the global state. Then we
use v and u to project the global state into a scalar which
represents how important current frame is.

It is important that we want to get the relative importance
for each frame among a sequence of frames. In the same time,
we need a gate to control the information exchange inmij and
nkl. In this paper, we use softmax to get the relative impor-



tance score as follows:

αij =
exp(eij)∑T
d=1 exp(edj)

, βkl =
exp(fkl)∑T
d=1 exp(fdl)

(4)

In this formulation, the information flow is controlled by α
and β. After applying softmax, most of α or β are 0 and only
the most important inputs have positive weights. This ensures
that only the information of these important inputs can back
propagate to e and f , and finally impact both branches. Be-
cause that there is no other layer shared by two branches, α
and β are the gates to control the information flow which can
be shared across two branches and is called sharing gates.

Finally, the importance scores are used to weighted aver-
age all features.

osj =
T∑

d=1

αdjhd , otl =
T∑

d=1

βdlgd (5)

where osj and otl are the outputs of spatial branch and temporal
branch respectively and followed by fully-connected layers
to learn classifiers. Each input feature vector in one branch
(denote as A) will be used to compute a group of weights for
the other branch (denote as B), and the weights are then used
to get weighted average of input feature vectors in B.

2.2. Training Details

Many works [14, 23] have shown that the stack of 10 opti-
cal flow fields will get better performance than single optical
flow field. However, the more optical flow fields we are us-
ing, the more parameters there will be in the first layer. In
the same time, the input itself will also consume much more
memory. In order to speed up the training and testing, we use
single optical flow field as input. In our implementation, the
flow-x, flow-y and their quadratic mean are stacked to get a
three channel image which is then used to train the temporal
branch. It should be noted that single optical flow field will
produce relatively worse performance than 10.

Pre-training has turn out to be an effective way to initial-
ize deep networks when the target dataset is not big enough.
As the spatial branch takes video frame as input, which is ac-
tually a RGB image, it is natural to initialize it with ImageNet
[24] pre-trained model. For the temporal branch, we trans-
form the original optical flow fields into images so that we
can train it like spatial branch. We discretize the optical flow
fields into interval of [0, 255] by a linear transformation and
save them as images. As discussed before, we stack flow-x,
flow-y and their quadratic mean to get a three channel image.
These steps make optical flow fields to be the same with RGB
images. Then we are able to initialize the temporal branch
with ImageNet pre-trained model.

In order to further improve the performance of TAN, we
investigate how to train the model on small dataset. Af-
ter going through no pre-training, pre-train CNNs on target

Table 1. Accuracy of TAN under different pre-training set-
tings on the first split of HMDB51 and UCF101.

Dataset HMDB51 UCF101
Pre-train TAN TAN+† TAN TAN+

CNN on ImageNet 60.5% 69.0% 86.2% 91.8%
CNN‡ 68.6% 73.0% 92.0% 93.8%

CNN on UCF101 70.3% 73.7% - -
TAN on UCF101 70.2% 73.9% - -
† TAN + MIFS.
‡ Pre-train the CNN part on the target dataset.

dataset, pre-train CNNs on big dataset and pre-train TAN on
big dataset, we find that pre-train TAN will improve the most
(see the Experiment Section).

2.3. Using TAN for Action Recognition

For each time step, spatial and temporal branch will gener-
ate attention weights for each other. Because we use the cell
states and outputs to compute attention weights, it is easy
to understand that the last time step can predict based on
the whole video history hence producing the best attention
weights. Therefore, we only keep the last prediction for each
sample video. Unlike many other papers [14, 23] which sam-
ple 25 RGB frames or optical flow stacks from each original
video, we only use 5 samples to reduce complexity, and we
find that this setting only decrease the performance slightly.
Meanwhile, we crop 4 corners and 1 center, and their hori-
zontal flipping from each sample to evaluate TAN. Finally, all
predictions are averaged to get the final label.

Many works [12, 19] have proved the complementation
between deep features and hand-crafted features. In order to
further improve the performance, we merge TAN and MIFS
[25] by late fusion in the test stage.

3. EXPERIMENTS

This section will first introduce experimental settings. Then,
we describe the implementation details of our model. We will
then compare TAN with several baseline methods. Finally,
we report the experimental results and compare TAN with the
state-of-the-art methods.

3.1. Experimental Settings

To verify the effectiveness of our methods, we conduct ex-
periments on two benchmark datasets: HMDB51 [26] and
UCF101 [27].

The HMDB51 dataset is composed of 6,766 video clips
from 51 action categories, with each category containing at
least 100 clips. Our experiments follow the original evalu-
ation scheme, and average accuracy over the three train-test



FC BS BS+L2 Average TAN

80

85

90

95
81
.4

80

83
.9

9
0
.2 9
2

80
.3

80
.5

83
.4

80
.7 82

.8

81
.7

A
cc

ur
ac

y

Fusion Spatial Temporal

Fig. 3. Comparison of different fusion methods on the first
split of UCF101.

Table 2. The accuracies of TAN on all splits of HMDB51 and
UCF101.

Split 1 2 3 Mean
HMDB51 73.9% 71.7% 71.9% 72.5%
UCF101 93.8% 94.5% 94.0% 94.1%

splits is reported. UCF101 is one of the most popular action
recognition datasets. It contains 13,320 video clips (27 hours
in total) from 101 action classes and there are at least 100
video clips for each class. We conduct evaluations using 3
train/test splits and report the average classification accuracy.

3.2. Implementation details

We use TensorFlow [28] to implement our model. To simplify
the training process and highlight the contribution of TAN, we
use a very simple CNN architecture, GoogLeNet [13]. We use
GRU [29] as our LSTM implementation. To extract optical
flow, we choose the TVL1 optical flow algorithm [30] and
use the OpenCV GPU implementation.

In the remainder of the paper, we use spatial stream and
temporal stream to indicate the streams in two-stream frame-
work, and use spatial branch and temporal branch to indicate
the branches in TAN network.

3.3. Exploration study

In order to prove the effectiveness of TAN, we propose three
other methods which share similar techniques with TAN. The
architectures of three methods are described in the appendix.
The TAN can be considered as an extension of FC fusion,
branch selection and spatial attention methods. We use joint
network structure like FC fusion and branch selection while
avoid their “one-stream-dominating-network” problem. TAN
learns attention weights on temporal domain while spatial
attention learns attention weights on spatial domain. Even

Table 3. Comparison with our baseline two-stream model on
the first split of HMDB51.

Module Spatial Temporal Fusion
Two-stream CNNs+LSTMs 46.2% 50.3% 58.4%

TAN 51.4% 60.3% 70.2

though these methods are using similar solution, TAN is the
only one which can improve baseline performance and out-
perform average softmax score late fusion. According to Fig-
ure 3 and Table 4, TAN is 1.8% better than average late fusion
and other trails are worse than average late fusion on the first
split of UCF101. As shown in Table 3, TAN is 11.8% better
than average fusion on the first split of HMDB51.

As shown in Table 1, we test TAN under multiple pre-
training setting on the first split of HMDB51 and UCF101.
When there is no pre-training, TAN get lower accuracies
than two-stream framework. However, compared with FC
fusion or branch selection, there is clearly no “one-stream-
dominating-network” problem and the fused model is much
better than each branch. As discussed before, when training
joint network, pre-training CNNs is very important because
temporal branch is converging slower than spatial branch. Af-
ter pre-training CNNs on the target dataset, TAN is able to
achieve significantly better performance on both datasets.

For the fact that HMDB51 is smaller than UCF101, we
also try to pre-train CNN or TAN on UCF101, then transfer
pre-trained model to HMDB51. Pre-training on UCF101 has
more impact on the spatial branch. It is possibly because spa-
tial branch shares the same modality with ImageNet and is
very easy to converge which makes it easy to be over-fitting
on small dataset. Both pre-training setting generate better re-
sults than pre-train on target dataset. However, pre-train CNN
or TAN produce similar performance. Because pre-training
TAN on UCF101 will make it converge faster on HMDB51,
in the rest of the paper, we will use the model which pre-trains
TAN on UCF101 to compare with other methods.

3.4. Evaluation of TAN

In this section, we will test TAN on two datasets and report
the accuracies. We will also explore several experiments to
see why and how TAN works.
Benefits from TAN. The performances of two-stream frame-
work with average late fusion and TAN are shown in Figure
3 and Table 3. TAN can not improve single branch markedly
on UCF101, but improves significantly on HMDB51. This
may be because that (1) frames in one video of UCF101 do
not vary too much and can be well classified by single frame;
(2) video lengths of UCF101 are shorter than HMDB51 and
selecting important frames for a longer video is much more
useful. When considering the final fused model, TAN out-
performs two-stream model 1.8% on UCF101 and 11.8% on



Table 4. Comparison with existing attention methods on
HMDB51 and UCF101.

Model HMDB51 UCF101
Soft attention [17] 41.3% -

Multi-branch attention [20] 61.7% 90.6%
Spatial attention (SA) - 81.95%
SA + pre-train CNN - 88.47%

TAN 68.3% 92.1%

Fig. 4. The class-level improvement from two-stream to TAN
on UCF101. TAN improves a lot to the classes which have
many postures shared with other action classes.

HMDB51. The improvement is because that TAN is able to
select the best frames from spatial and temporal sequences.
When fusing two streams, we can always benefit from using
the best predictions. The significantly improvement proves
that two-stream framework can benefit a lot from TAN.
Comparison with existing video attention. As shown in
Table 4, our TAN achieves much better accuracy than exist-
ing attention methods. TAN outperforms soft attention [17]
27% on HMDB51 dataset and outperforms multi-branch at-
tention [20] 6.6% on HMDB51 and 1.5% on UCF101 respec-
tively. Although TAN is much simpler than multi-branch at-
tention [20], our performance outperforms it a lot, especially
on HMDB51 dataset. The inefficiency of soft attention [17]
also confirms the experiment result of our spatial attention.
Evaluation on benchmark datasets. The accuracies of TAN
on two benchmark datasets are shown in Table 2. For the
HMDB51 dataset, TAN performs good on the first split while
relatively worse on the other two splits. And the overall per-
formance is not as good as in UCF101. We think this should
be related to the small training set size (3570 videos). But
TAN is still outstanding on HMDB51 when comparing to
other methods. The TAN performs good on all three splits
of UCF101. In most cases, the temporal branches achieves
better performance than the spatial branches. This proves the
importance of motion information and inspires us to focus on
temporal domain.

In order to explore the effect of TAN on class level, we
show the per-class accuracies of the 101 classes in Figure 4.

Table 5. Comparison of TAN to the state-of-the-art methods
on HMDB51 and UCF101.

Module HMDB51 UCF101
MIFS [25] 65.1% 89.1%

Two-stream ConvNets [14] 59.4% 88.0%
TDD+FV [12] 63.2% 90.3%

Multi-branch attention [20] 61.7% 90.6%
sDTD [31] 65.2% 92.2%

Conv Fusion [32] 65.4% 92.5%
TSN (Inception-BN) [23] 69.4% 94.2%

Ours 72.5% 94.1%

The results agree with our motivation and TAN has great ef-
fects on the classes which have many postures shared with
other action classes. The TAN is able to improve the accuracy
of “Lunges” from 59.4% to 81% and improve from 28.5% to
71% for “Nunchucks”.

3.5. Comparison with the State-of-the-art

Table 5 compares our results with several state-of-the-art
methods on HMDB51 and UCF101 datasets. Unlike most
of existing methods, who use a stack of 10 optical flow fields
as one sample, all of our experiments use 1 group of optical
flow fields to reduce complexity. Therefore, we get relatively
worse performance on the temporal stream. But we can still
achieve the state-of-the-art performance after applying TAN.

Compared to the two-stream ConvNets [14], which is the
most famous baseline, we get around 13.1% and 6.1% im-
provements on HMDB51 and UCF101 datasets, respectively.
Compared to TSN [23], TAN achieves better performance
on HMDB51 while slightly worse on UCF101. However,
TSN use Inception-BN as the CNN network while we use
GoogLeNet, and Inception-BN is proved to achieve 3% [23]
better result than GoogLeNet on UCF101.

4. CONCLUSION

In this paper, we propose the Temporal Attentive Network
(TAN) on action recognition, which aims to make two streams
benefit from each other and learn to focus on the most dis-
criminative frames of a video sequence in the temporal do-
main. We also explore several fusion and attention models.
As demonstrated by the experimental results on two bench-
mark datasets, our TAN model can improve the two-stream
framework remarkably and achieve state-of-the-art perfor-
mance. Compared with other methods, TAN is easy to im-
plement while maintaining a similar computational cost.

Acknowledgement. This work is partially supported by
grants from the National Key R&D Program of China un-
der grant 2017YFB1002401, the National Natural Science



Foundation of China under contract No. U1611461, No.
61390515, No. 61425025, No. 61471042 and No. 61650202.

5. REFERENCES

[1] Jeroen van Rest, FA Grootjen, Marc Grootjen, Remco Wijn,
Olav Aarts, ML Roelofs, Gertjan J Burghouts, Henri Bouma,
Lejla Alic, and Wessel Kraaij, “Requirements for multime-
dia metadata schemes in surveillance applications for security,”
Multimedia tools and applications, 2014.

[2] Sarvesh Vishwakarma and Anupam Agrawal, “A survey on ac-
tivity recognition and behavior understanding in video surveil-
lance,” The Visual Computer, 2013.

[3] Subhashini Venugopalan, Marcus Rohrbach, Jeffrey Donahue,
Raymond Mooney, Trevor Darrell, and Kate Saenko, “Se-
quence to sequence-video to text,” in ICCV, 2015.

[4] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas
Leung, Rahul Sukthankar, and Li Fei-Fei, “Large-scale video
classification with convolutional neural networks,” in CVPR,
2014.

[5] Jiasen Lu, Jason J Corso, et al., “Human action segmentation
with hierarchical supervoxel consistency,” in CVPR, 2015.
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