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Abstract—In-loop filtering is an important technique in mod-
ern video coding standards. In this paper, we propose a
transform-domain in-loop filter to further improve the com-
pression performance of high efficiency video coding (HEVC)
standard. The proposed method estimates block transform coef-
ficients by adaptively fusing two prediction sources according
to their uncertainties respectively. The first prediction is the
block transform coefficients of compressed video frames, the
uncertainty of which is related to quantization parameters. The
second prediction is the weighted average of transform blocks
in a neighborhood, and the weights are designed according
to block similarity. Its uncertainty is estimated based on the
coefficient variance. To optimize the filtering performance, the
parameters utilized in the proposed in-loop filter are learned from
compressed videos for each quantization parameter offline, and
frame level flags are utilized to switch the proposed in-loop filter
according to rate-distortion cost. Extensive experimental results
show that the proposed in-loop filter can further improves the
compression efficiency of HEVC.

Index Terms—In-loop filter, HEVC, block similarity, transform
coefficient estimation

I. INTRODUCTION

In-loop filtering is an important technique in state-of-the-art
video coding standards, e.g., deblocking filter in H.264/AVC
and sample adaptive offset (SAO) in HEVC. On one hand,
the in-loop filters can improve the quality of current coded
frame directly by reducing compression artifacts, e.g., block-
ing artifacts and ringing artifacts. On the other hand, the
filtered frames can provide more accurate inter-prediction for
subsequent frames, which leads to bit-rate savings further.

H.264/AVC first adopted the deblocking filter (DF) [1]
into the coding loop, and applied different low pass filters
to 4 × 4 block boundaries according to coding information,
e.g., prediction modes, motion vectors and reference frame
indices. Besides DF, HEVC further adopted a nonlinear in-
loop filter, Sample Adaptive Offset (SAO) [2], to reduce
compression artifacts by adding different offset values to each
sample, and these offset values are derived by minimizing
reconstruction errors at the encoder and transmitted to the
decoder side. Adaptive Loop Filter (ALF) [3], [4] was another
widely discussed in-loop filter in HEVC development, which
derives Wiener filters by minimizing distortions between orig-
inal samples and decoded samples and needs transmit filter

parameters to the decoder side. However, these in-loop filters
only take advantage of image local smoothness prior, which
may be inefficient for edge and texture regions.

The well known nonlocal means (NLM) filter [5] achieves
good denoising performance, which takes weighted average
of nonlocal image patches as the noise-free estimation. The
weights are determined by the similarity of image patches
located at the source and target coordinates. Matsumura et
al. [6] introduced the NLM filter into HEVC by elaborately
designing the filter strength, template size and control flags
to further improve its performance in video coding. Zhang
et al. [7], [8] also utilized image nonlocal similar patches to
construct a low-rank matrix, and then applied soft-thresholding
operation to the singular values of the matrix to reduce
compression artifacts. However, nonlocal image prior model
is also not always valid for different image content.

In this paper, we propose a novel in-loop filter by fusing
two prediction sources in transform domain adaptively to
further improve video coding performance. In the proposed
method, the reconstructed frame from deblocking filter is
transformed with block discrete cosine transform (BDCT),
and the transform coefficients are utilized as one prediction
source, the uncertainty of which is determined by quantization
parameters (QP). Then, we take the weighted average of non-
local transform blocks as another prediction, the uncertainty of
which is measured by the variance of coefficients in each band.
In order to improve filtering performance, the filter parameters
are optimized based on compressed videos offline, and frame
level flags for different color components are added in picture
header syntax structure to switch the proposed filter according
to the distortion changes of the filtered frames. The proposed
transform-domain adaptive in-loop filter (TALF) is integrated
into HEVC reference software, HM7.0, and extensive experi-
mental results show that the proposed TALF further improves
the compression performance of HEVC significantly.

The remainder of this paper is organized as follows. Section
II introduces the proposed transform-domain adaptive in-loop
filter in detail. Extensive experimental results are reported in
Section III, and Section IV concludes the paper.

II. THE TRANSFORM-DOMAIN ADAPTIVE IN-LOOP FILTER

The framework of the proposed transform-domain adaptive
in-loop filter is illustrated in Fig.1. In the proposed method,
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Fig. 1. The framework of the proposed transform-domain adaptive in-loop
filter.

we first transform all the blocks in the frame, Iy , reconstructed
from deblocking filter with 8 × 8 BDCT. Then, we estimate
the original DCT coefficients for every block by adaptively
fusing two prediction sources, i.e., transform prediction and
nonlocal prediction with similar transform blocks, according
to their uncertainties. In order to improve the filtering per-
formance, the processed blocks are overlapped, and the final
reconstructed samples are weighted average of reconstruct-
ed samples from different block estimations. To ensure the
filtering efficiency, frame level control flags are utilized to
switch the filtering process for each color component, i.e.,
TALF Y ON, TALF U ON, TALF V ON corresponding to
Y/U/V color components respectively. If the distortions of
filtered color component decrease at the encoder side, the
corresponding flag is signaled as ture, which indicates the
decoder that the corresponding color component should be
filtered. If the distortions of filtered color component increase
at the encoder side, the corresponding flag is signaled as false,
which indicates the decoder that the filtering process is skipped
for the corresponding color component. For one frame, there
are only three bits utilized to signal these frame level control
flags.

A. Transform prediction

Although the reconstructed samples from deblocking filter
contaminated by quantization noise, they are also an efficient
prediction for original ones, the uncertainty of which is related
with quantization noise levels. In this paper, we take the vari-
ance of quantization noise in each band, σ2

n(u, v), to measure
the quantization noise level, and utilize its reciprocal to reflect
the uncertainty of transform prediction. The larger the 1

σ2
n(u,v)

is, the uncertainty of transform prediction is less. Considering
the quantization noise is directly related with quantization
parameters (QP), we learn the relationship between standard
deviation of quantization noise and QPs from three widely
used WQVGA video sequences, i.e., BasketballPass, Race-
Horses and BlowingBubbles, which are compressed by HEVC
with different QPs. Fig.2 shows their relationship for different
bands, which can be well approached by Gaussian function.
Therefore, we estimate the standard deviations of quantization
noise in each band of 8×8 transform blocks for different QPs
and different frame types, i.e., I/P/B frames. Table I shows
an example of the standard deviations of quantization noise,
which are estimated for I frame compressed at QP=27. We can

(a) band (0,0) (b) band (0,3)

(c) band (3,0) (d) band (3,3)

Fig. 2. The relationship between standard deviation of quantization noise in
8× 8 BDCT domain and QPs for intra coding frames

see that the standard deviations of quantization noise in high
frequency bands are less than that in low frequency bands,
which corresponds to less uncertainty.

TABLE I
THE STANDARD DEVIATION,σn(u, v), OF QUANTIZATION NOISE AT

QP=27 IN 8× 8 BDCT DOMAIN

4.03 4.01 3.94 3.92 3.89 3.56 3.45 3.18
3.96 3.94 4.02 3.72 3.55 3.34 3.26 2.86
4.11 3.92 3.98 3.72 3.78 3.36 3.20 2.87
4.05 3.82 3.74 3.57 3.57 3.29 3.09 2.67
3.97 3.76 3.61 3.44 3.52 3.13 3.26 2.62
3.84 3.58 3.48 3.27 3.13 3.05 2.88 2.47
3.82 3.56 3.31 3.09 2.94 2.77 2.72 2.22
3.36 3.07 2.86 2.62 2.46 2.35 2.10 1.91

B. Nonlocal prediction with similar transform blocks

Besides the transform prediction, we also utilize the weight-
ed average of the nonlocal similar transform blocks to form
another prediction for the target transform block, and the
weights are determined based on the block similarity as
follows,

wt,r =
1

S
e−
‖Yt−Yr‖2

h . (1)

where S is a normalization constant, and h is a smoothness
factor; wt,r represent the weight of referenced similar block
Yr relative to target transform block Yt. Then, the nonlocal
prediction for band (u, v) is calculated as,

X̂
(c)
t (u, v) =

R∑
r=1

wt,rYr(u, v). (2)

Since the nonlocal prediction is based on the assumption
of block similarity, when these blocks are more similar, the
prediction will be more accurate. Therefore, we take the
reciprocal of the variance of coefficients in the same band to
reflect the uncertainty of the nonlocal prediction. The variance



Fig. 3. The optimal smoothness factors for luminance component of intra
coding frame.

of nonlocal transform coefficients for band (u, v) is calculated
with,

σc(u, v) =
s

R

R∑
r=1

(Yr(u, v)− µ(u, v))2, (3)

µ(u, v) =
1

R

R∑
r=1

(Yr(u, v)). (4)

where s is a scale factor, which is used to compensate the
influence on coefficient variance due to compression.

C. Frame reconstruction and parameter determination

Based on the two prediction sources, we can get a better
prediction by adaptively fusing them according to their uncer-
tainties,

X̂t(u, v) = Yt(u, v) +
σ2
n(u, v)

σ2
c (u, v) + σ2

n(u, v)
X̂

(c)
t (u, v). (5)

Since the blocks are overlapped, the final filtered frame is the
average of multiple samples by inversely transforming these
estimated block coefficients.

In the proposed TALF, there are two parameters, i.e., scale
factor s in Eqn.(3) and smoothness factor h in Eqn.(1) to be
determined. The first parameter s is determined empirically,
s = 2 for intra coding and s = 5 for inter coding. The
smoothness factor, h, is related with the quantization noise
level, which can be reflected by QPs. We take two WQVGA
video sequences, i.e., RaceHorses, and BlowingBubbles to
learn the optimal smoothness factors for different QPs, which
achieve largest amount of distortion reduction. Fig.3 shows
the relationship between the QPs and the optimal smoothness
factors. We fit the relationship with polynomial for different
coding methods including intra coding and inter coding, and
for luminance and chroma components respectively.

III. EXPERIMENTAL RESULTS

The proposed TALF has been implemented into HEVC
reference software, HM7.0, and is placed between DF and
SAO. In this section, we verify the efficiency of the proposed
TALF with and without ALF on widely used video sequences
as shown in Tables II and III. The first 50 frames are encoded
with four QPs, i.e., 22, 27, 32 and 37. Three coding configures
are tested, which are all intra coding (AI), low delay P coding

(a) Kimono (b) Johnny

Fig. 4. Luminance PSNR curve for different sequences compressed by HEVC
with and without the proposed TALF under LDP coding configurations with
ALF off

(LDP) and random access coding (RA). The anchor is HM7.0
with and without ALF.

Compared with HM7.0 without ALF in Table II , the
proposed TALF further improves the coding performance,
achieving 2.4%, 4.8% and 2.2% bit-rate savings on average
for luminance component under AI, LDP and RA coding
configurations, respectively. It also achieves up to 6.0% bit-
rate savings on average for chroma components under LDP
coding configuration. Especially for Kimono and Johnny,
the proposed TALF achieves up to 11.6% and 9.8% bit-
rate savings. Compared with HM7.0 with ALF, the proposed
TALF also achieves 1.8%, 2.9% and 1.7% bit-rate savings for
luminance component on average. The improvement is not
significant as that when ALF is off, because the compression
noise has been significantly reduced by the proposed TALF,
which deteriorates the performance of ALF. Fig.4 shows the
PSNR curves for sequences, Kimono and Johnny, and the
proposed TALF achieves bit-rate savings over a very large
bit rate range. Although the proposed method improves the
compression performance obviously, it also introduces signif-
icant computational burdens. On average, the encoding time
increases by 638%, 186%, 175% compared with that of HM7.0
for AI, LDP and RA respectively. Fast algorithms should be
investigated for the proposed TALF to speed it up in our future
work.

IV. CONCLUSION

In this paper, we have proposed a novel transform-domain
adaptive in-loop filtering method by fusing transform coef-
ficient and nonlocal transform coefficients in similar block-
s according to their uncertainties. The transform-domain
method can estimate prediction uncertainty band-by-band,
which makes the multiple prediction fusion more efficient than
that in spatial domain. Based on the experimental results on
widely used video sequences, the proposed TALF can efficient-
ly improve the compression performance further compared
with HEVC, without introducing extra overhead, since three
frame level flags are negligible.
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TABLE II
BIT-RATE SAVING OF THE PROPOSED TALF, ANCHOR IS HM7.0 WITH ALF OFF

Sequences AI LDP RA
Y U V Y U V Y U V

1920× 1080

Kimono -4.4% -2.2% -2.0% -11.6% -8.7% -6.1% -4.0% -4.5% -2.3%
ParkScene -1.1% -1.1% -1.0% -1.7% -0.9% -2.3% -0.3% 0.0% -0.5%

Cactus -2.2% -1.6% -3.1% -5.1% -4.7% -3.7% -2.5% -3.1% -3.0%
BasketballDrive -3.4% -4.0% -4.2% -6.9% -10.7% -9.3% -3.1% -7.0% -6.4%

BQTerrace -1.2% -1.4% -1.9% -6.8% -4.7% -6.2% -2.1% -2.3% -3.4%

1280× 720

vidyo1 -4.9% -4.2% -4.6% -7.0% -9.9% -9.8% -4.7% -8.9% -8.5%
vidyo3 -3.8% -2.5% -2.2% -7.3% -9.4% -4.1% -3.1% -6.4% -2.2%
vidyo4 -3.6% -4.7% -4.0% -6.3% -13.4% -11.6% -3.3% -10.3% -8.7%

FourPeople -4.2% -3.5% -3.8% -7.0% -8.5% -8.4% -5.0% -7.7% -8.5%
Johnny -4.1% -5.0% -4.5% -9.8% -15.2% -12.4% -3.7% -10.1% -9.6%

KristenAndSara -4.5% -4.4% -4.7% -8.3% -11.9% -12.7% -5.1% -7.8% -9.9%

832× 480

BasketballDrill -1.3% -3.3% -4.2% -1.5% -3.8% -4.7% 0.1% -3.3% -4.1%
BQMall -1.7% -1.8% -2.1% -2.4% -2.1% -2.0% -0.5% -1.1% -1.7%

PartyScene -0.2% -0.8% -1.0% -0.4% -0.2% 0.3% -0.1% 0.7% 0.1%
RaceHorsesC -1.6% -2.1% -3.7% -4.0% -3.7% -6.7% -2.7% -4.5% -6.5%

416× 240

BasketballPass -1.2% -2.1% -2.2% -1.6% -1.9% -0.7% -0.5% -1.0% 0.4%
BQSquare 0.0% -1.6% -2.2% 0.1% 0.0% -0.3% 0.4% -0.3% -1.2%

BlowingBubbles -1.0% -2.0% -2.1% -0.9% -1.8% -0.2% -0.3% -1.3% -0.4%
RaceHorses -1.9% -1.8% -2.5% -2.4% -1.5% -1.6% -1.8% -2.7% -3.0%

Overall -2.4% -2.6% -3.0% -4.8% -6.0% -5.4% -2.2% -4.3% -4.2%

TABLE III
BIT-RATE SAVING OF THE PROPOSED TALF, ANCHOR IS HM7.0 WITH ALF ON

Sequences AI LDP RA
Y U V Y U V Y U V

1920× 1080

Kimono -3.8% -1.6% -2.0% -5.5% -3.8% -4.8% -3.7% -3.8% -3.7%
ParkScene -2.3% -1.8% -0.9% -2.0% -4.9% -2.3% -1.4% -4.6% -2.1%

Cactus -2.7% -2.0% -2.0% -4.2% -6.2% -4.6% -2.0% -4.9% -3.0%
BasketballDrive -2.5% -1.2% -1.4% -3.5% -1.4% -1.8% -2.3% -1.5% -1.2%

BQTerrace -0.2% -0.3% -0.4% 0.1% -0.1% -1.2% 0.1% 0.0% -0.4%

1280× 720

vidyo1 -1.4% -1.1% -1.9% -3.0% -2.4% -1.2% -1.6% -2.8% -2.2%
vidyo3 -2.6% -2.7% -2.9% -3.2% -7.6% -6.1% -2.1% -6.3% -4.7%
vidyo4 -0.9% -1.0% -1.2% -4.2% -4.0% -5.3% -1.7% -1.6% -3.1%

FourPeople -2.5% -1.4% -1.5% -4.1% -4.2% -3.7% -3.1% -3.7% -4.2%
Johnny -3.1% -2.4% -1.9% -8.2% -9.1% -7.6% -3.7% -5.3% -5.2%

KristenAndSara -3.1% -2.3% -2.3% -6.2% -7.1% -5.8% -4.2% -3.7% -4.9%

832× 480

BasketballDrill -1.2% -2.7% -3.6% -0.8% -4.5% -5.3% 0.2% -4.3% -4.8%
BQMall -1.7% -1.0% -1.2% -2.1% -1.1% 0.0% -0.9% -0.3% -0.7%

PartyScene -0.3% -0.5% -0.6% -0.4% -0.2% 0.0% 0.1% 0.3% 0.3%
RaceHorsesC -1.1% -1.0% -1.9% -2.9% -2.0% -4.6% -2.3% -2.3% -4.4%

416× 240

BasketballPass -1.4% -1.9% -1.8% -1.4% -2.1% -2.1% -1.0% -1.7% -1.4%
BQSquare -0.2% 0.3% -0.6% -0.1% 2.1% 0.8% -0.1% 0.3% 1.1%

BlowingBubbles -1.1% -1.2% -0.8% -1.0% -1.2% -0.8% -0.6% -1.8% -0.4%
RaceHorses -1.2% -0.3% -1.1% -2.1% -1.7% -3.0% -1.7% -1.3% -2.3%

Overall -1.8% -1.4% -1.6% -2.9% -3.2% -3.1% -1.7% -2.6% -2.5%
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