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Abstract—In this paper, we propose a novel method to 

transmit the label maps by propagating from a key frame to non-
key frames. The label map of a non-key frame is initialized by 
warping the label map of its corresponding key frame according 
to the motion estimation between them. Subsequently, the 
initialized label map is optimized with the guidance of its texture 
image. The optimization process minimizes an energy function 
which takes two constraints into consideration: (i) the data term 
measuring the similarity between an estimated label map and its 
initialized one, (ii) the regularization term enforcing the local 
smoothness in the label map and the consistency of region 
boundaries between the estimated label map and its 
corresponding texture image. Graph cuts based computation 
process is finally performed to generate the optimized label map. 
Experimental results show that our method achieves higher 
accuracy and better visual quality comparing with the state-of-
the-art method. 
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I.  INTRODUCTION  
Obtaining frame-based semantic label maps of a video 

sequence is one of the key steps in the typical computer vision 
and video processing tasks, e.g. object tracking, scene 
segmentation [1], geometry structure analysis [2], and even 
video compression [3]. Compared with the independently 
frame-by-frame label estimation, it not only reduces 
computational complexity but also maintains the temporal 
coherence by propagating label maps from key frames to the 
unlabeled non-key frames. Especially, when preparing training 
datasets in some learning tasks in video sequences, an 
automatic label propagation method could dramatically reduce 
the burden of manual annotation [4]. 

Intuitively, the label maps of non-key frames can be 
directly warped from their previous key frames according to 
the motion estimation between them [5]. However, such 
methods only work well with short-term reference but not for 
long-term one due to the accumulative estimating error and 
lack of correspondences [6]. For long-term reference, some 
probabilistic methods are proposed [4, 5-9]. In [6], a graphical 
model of HMM is proposed to couple image sequences and 
their annotation. The label maps of non-key frames are 
obtained by using the EM estimation method. J. Rituerto [7] 
introduces a superpixel based label propagating method, but 
the performance depends on the accuracy of superpixel 
extraction. Other learning based methods are also proposed, e.g.  

 
Fig. 1. The framework of the proposed method. 

by using localized random forests [8] or temporal tree structure 
[9]. Bai and Sapiro [10] treat the video as a space-time volume 
and propagate labels via the shortest geodesic distance. All the 
aforementioned methods heavily depend on the complex 
appearance models while avoiding the use of dense optical 
flow. In [4], a probabilistic pixel labeling model is proposed by 
combing motion, appearance and spatial smoothness 
constraints. Comparing with the methods which use motion or 
appearance information alone, this method achieves better 
performance. However, the performance of this method 
depends on the assumed distributions of label uncertainties. 
Thus, it is hard to determine the adaptive probabilistic 
distribution for different videos. Another disadvantage of the 
learning based methods is that the applications of such methods 
are constrained by the training data.  

To address the aforementioned issues, we propose a label 
map propagation method which combines the constraints both 
from motion estimation and texture information. The label map 
of a key frame can be provided either by manual annotations or 
by the estimation using certain trained classifier/estimator. The 
label map of a non-key frame is estimated by solving an 
optimization problem on the defined energy function by graph 
cuts. The proposed energy function consists of two terms, (i) 
the data term to evaluate the label map similarity between the 
key frame and the estimated one and (ii) the regularization term 
to maintain the spatial structure coherence between the 
estimated label map and its corresponding texture image. 
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As shown in Fig. 1, the data term is computed by 
comparing the estimated label map with the initialized one, and 
the initialized one is directly warped from the key frame’s label 
map according to the motion information. The regularization 
term is calculated by introducing an anisotropic total 
generalized variation, which provides the underlying 
description of the region boundaries in the texture image and 
its local smoothness inner the regions. 

Instead of using complex appearance model, the proposed 
method utilizes the constraint of structure consistency between 
the estimated label map and its corresponding texture image. 
Thus it is adaptive to more scenarios in real applications 
without the constraint of training dataset in the learning based 
methods. Since the coherence between the estimated label map 
and texture image is maintained, our method overcomes the 
shortcomings of motion estimation based propagation. 

The rest of this paper is organized as follows. In Section 2, 
we introduce the proposed label map propagation method. The 
experimental results are presented and discussed in Section 3. 
Section 4 concludes this paper. 

II. IMAGE GUIDED LABEL MAP PROPAGATION 
Given a video shot, the label map of a key frame (the first 

frame in this paper) is annotated by handcraft. We propose a 
label map estimation model which utilizes the corresponding 
texture information to propagate the label map from the key 
frame to non-key frames. The flowchart of the proposed 
method is illustrated in Fig. 1. This method estimates the label 
map of the current frame by utilizing both motion estimation 
for initialization and texture image guidance in the 
optimization. The label maps of the video sequence can be 
obtained frame by frame with the proposed method.  

We formulate the label map propagation as a discrete 
optimizing problem. The optimized estimated label map LE is 
obtained by minimizing an energy function as follows, 

� � � �^ `= argmin ,E s
u
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where the energy function consists of two term, the data term 
D and the regularization term S. The data term measures the 
similarity of an estimated label map u and the initialized one, 
LS. The regularization term reflects the priors of the label 
map’s smoothness among the neighboring pixels and 
similarity of region boundary between the label map and its 
texture image. The factor  is used to balance the relative 
weight between two terms. 

A. Data Term 
The data term ensures the consistency between the 

estimated label map and the initialized one, which is 
formulated as follows,  

� � � � � � � �� �, ,s sD u L W x u x L x dxG
:
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where Ω is the image space of non-key frame, x denotes a 
pixel coordinate and W denotes a weighting matrix. LS is the 
initial label map warped from the key frame’s label map  

 
(a) Texture image                                  (b) Manual labeled map 

Fig. 2. Texture and manual-labeled map. 

according to the motion estimation between them. The function 
δ is used to penalize the difference between the label of pixel 
x and that of pixel y and it is defined as 
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      In our implementation, we utilize the optical flow method 
mentioned in [11] to obtain the motion estimation, which 
employs the state-of-the-art algorithms and optimizing method. 
The weighting matrix ԝ in Eqn (2) is equal either to zero or 
one. If there is an initial label value at pixel x which is warped 
from the key frame, w is set to one. Otherwise, w is set to zero. 

B. Regularization Term 
In order to optimize the initial estimation, the regularization 

term is added to the energy function to constrain the structure 
similarity between the estimated label map and the texture 
image, i.e. region boundary coherence and inner-region 
smoothness. As shown in Fig. 2, pixels in the smooth region 
are correlative and should be labeled as the same one. Pixels 
among the texture boundary have lower correlation and should 
be labeled independently. 

In this paper, the regularization term is formulated as 
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where N is the set of all pairs of neighboring pixels. The 
coefficient B{x,y} describes the relative importance of the 
interaction between neighboring pixels x and y. 

Assuming that texture edge most likely correspond to 
estimating label discontinuities, the coefficient B{x,y} can be 
interpreted as a descriptor for a discontinuity between x and y. 
Normally, B{x,y} is large when pixel x and y are similar (e.g. in 
their intensity) and B{x,y} is close to zero when they are different. 
In this way, the difference in labeling between pixels in smooth 
region will be assigned as a penalty. In addition, pixels among 
the texture boundary can be labeled independently. 

We introduce an anisotropic diffusion tensor to capture the 
edge information in the image. By expressing the coefficient 
B{x,y} as the anisotropic diffusion tensor, we can penalize 
estimating discontinuities at homogeneous regions and allow 
sharp edges at corresponding texture differences. Further, the 
regions where the label is interpolated are filled out reasonably. 
The tensor is formulated as 
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where n is the normalized direction of the image gradient n=∇
IH/|∇IH|, n┴ is the normal vector to the gradient and the factors 
ß,γ adjust the magnitude and the sharpness of the tensor. 

C. Optimization 
 According to the definition of the data term and the 
regularization term, the energy function is then reformulated as 
follows, 

  � � � �� � � � � � � �� �
,
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which consists of the data term and the regularization term with 
anisotropic diffusion. Image labeling could be modeled as 
Markov Random Field. The optimization of the proposed 
energy function is a discrete energy minimization on MRF. 
Graph cuts technique can be used to solve this problem and 
usually very fast [12]. The main idea of graph cuts is to define 
a graph such that there is a one-to-one correspondence between 
configurations of the energy function and cuts of the graph. 
And the total cost of the cut is exactly the same as the total 
energy of the proposed function. As illustrated in [13], the 
proposed energy function can be minimized by graph cuts. The 
data and regularization term in the energy function can be 
mapped to data cost and smooth cost in the graph cuts 
correspondently. The details of the construction of multi-label 
graph and the optimizing process can be found in [14]. 

      As mentioned above, error accumulation introduces some 
estimating error. Motivated by the approach used in video 
coding standard, we divide the whole video sequence into 
separate groups of frames. In this paper, each group has 5 
frames and the non-key frame refers to the first frame of the 
group to calculate optical flow estimation. 

III. EXPERIMENTAL RESULTS 

A. Dataset and Implementation 
We evaluate the proposed method on the NYU dataset [15]. 

This dataset comprises of video sequences from a variety of 
indoor scenes and contains abundant and complex indoor 
objects. The sequences are recorded by Microsoft Kinect that 
consists of both the texture and depth sensors. However, 
merely frames are provided with label map in the NYU dataset. 
In order to evaluate our method, we utilize MIT LabelMe 
online annotation tool [16] to further label the frame in three 
video sequences. Referring to the label maps given by NYU 
dataset, the ground truth is annotated by volunteers using 
LabelMe. 

B. Experimental Result and Analysis 
Fig. 4 shows several estimated label maps sampled from 30 
propagated label maps of sequences “Kitchen” and 
“Conference”. We compare the proposed method with the 
motion estimation method as well as the baseline method [4]. 
Motion based method warps the label map of key frame by 
directly using motion estimation and may produce holes. These 
holes form because the correspondence established by motion  

 
(a)  Sequence “Kitchen” 

 
(b) Sequence “conference” 

 
(c) Sequence “bookstore” 

Fig. 3. Performance comparison of label propagation in terms of different 
method. 

estimation between frames is neither injective nor surjective. 
Guided by the image clues, the proposed method accurately 
fills the hole. Comparing to the baseline method [4], the 
proposed method maintains the consistency of the region 
boundaries and inner region smoothness between the estimated 
label map and its corresponding texture image very well. 
Because the regularization term in the energy function is used 
to maintain the spatial structure coherence. Referring to the 
ground truth, performance comparison of different methods is 
made. As plotted in Fig. 3, comparing to the baseline method, 
the proposed method achieves higher estimation accuracy with 
better visual quality and maintains a stable performance over 
the test video sequences. As shown in Fig. 4 (b), the proposed 
method lacks the ability of recognizing new appearing objects. 
In Fig. 3 (b), the performance is degraded correspondingly. 
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(a)  Sequence “Kitchen”  

 
(b) Sequence “Conference” 

Fig. 4. Qualitative comparison of label propagation by different methods.  

 

IV. CONCLUSION 
In this paper, we propose a label map propagating method 

with image guidance. The proposed model considers both the 
spatial constraints and temporal information. The experimental 
results demonstrate that our method achieves higher estimation 
accuracy and better performance compared with the baseline 
method. 

It is noted that, if the label map is propagated across 
different video shots or there are new objects appearing in the 
non-key frame, the performance would be degraded. In the 
future work, we will investigate this problem and propose 
robust solutions for frame label propagation. 
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