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Abstract— Emotion recognition is challenging due to the
emotional gap between emotions and audio-visual features.
Motivated by the powerful feature learning ability of deep neural
networks, this paper proposes to bridge the emotional gap by
using a hybrid deep model, which first produces audio—visual
segment features with Convolutional Neural Networks (CNNs)
and 3D-CNN, then fuses audio-visual segment features in a
Deep Belief Networks (DBNs). The proposed method is trained
in two stages. First, CNN and 3D-CNN models pre-trained on
corresponding large-scale image and video classification tasks are
fine-tuned on emotion recognition tasks to learn audio and visual
segment features, respectively. Second, the outputs of CNN and
3D-CNN models are combined into a fusion network built with
a DBN model. The fusion network is trained to jointly learn a
discriminative audio—visual segment feature representation. After
average-pooling segment features learned by DBN to form a fixed-
length global video feature, a linear Support Vector Machine
is used for video emotion classification. Experimental results
on three public audio-visual emotional databases, including the
acted RML database, the acted eNTERFACE(5 database, and the
spontaneous BAUM-1s database, demonstrate the promising per-
formance of the proposed method. To the best of our knowledge,
this is an early work fusing audio and visual cues with CNN,
3D-CNN, and DBN for audio—visual emotion recognition.

Index Terms— Emotion recognition, deep learning, convolu-
tional neural networks, deep belief networks, multimodality
fusion.

I. INTRODUCTION
ECOGNIZING human emotions with computers is usu-
ally performed with a multimodal approach due to
the inherent multimodality characteristic of human emotion
expression. Speech and facial expression are two natural
and effective ways of expressing emotions when human

Manuscript received December 29, 2016; revised April 24, 2017 and
May 24, 2017; accepted June 20, 2017. Date of publication June 23, 2017;
date of current version October 24, 2018. This work was supported in part by
the National Science Foundation of China and Zhejiang Provincial National
Science Foundation of China under Grant 61572050, Grant LY 16F020011,
Grant 91538111, Grant 61620106009, and Grant 61429201. The work of
Q. Tian was supported in part by ARO under Grant W911NF-15-1-0290 and
in part by the Faculty Research Gift Awards by NEC Laboratories of America
and Blippar. This paper was recommended by Associate Editor L. Lin.

Shiging Zhang is with the Institute of Digital Media, School
of Electronic Engineering and Computer Science, Peking University, Beijing
100871, China, and also with the Institute of Intelligent Information Process-
ing, Taizhou University, Taizhou 318000, China (e-mail: tzczsq@pku.edu.cn).

Shiliang Zhang, T. Huang, and W. Gao are with the Institute of
Digital Media, School of Electronic Engineering and Computer Science,
Peking University, Beijing 100871, China (e-mail: slzhang.jdl@pku.edu.cn;
tjhuang @pku.edu.cn; wgao@pku.edu.cn).

Q. Tian is with the Department of Computer Science, The University
of Texas at San Antonio, San Antonio, TX 78249 USA (e-mail:
qitian@cs.utsa.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2017.2719043

beings communicate with each other. During the last two
decades, audio-visual emotion recognition integrating speech
and facial expression, has attracted extensive attention owing
to its promising potential applications in human-computer-
interaction [1], [2]. However, recognizing human emotions
with computers is still a challenging task because it is difficult
to extract the best audio and visual features characterizing
human emotions.

Feature extraction and multimodality fusion are two
key steps for audio-visual emotion recognition. As far as
feature extraction is concerned, there has been a number of
works [3]-[14] focusing on extracting low-level hand-crafted
features for audio-visual emotion recognition. Nevertheless,
due to the emotional gap between human emotions and
low-level hand-crafted features, these hand-crafted features
can not sufficiently discriminate human emotions. Here,
the “emotional gap” is defined as “the lack of coincidence
between the measurable signal properties, commonly referred
to as features, and the expected affective states in which the
user is brought by perceiving the signal” [15]. Therefore,
the “emotional gap” essentially represents the differences
between emotions and the extracted affective features.
To bridge the “emotional gap”, it is desirable to extract
high-level audio and visual features effectively distinguishing
emotions.

After feature extraction, multimodality fusion is employed
to integrate audio and visual modalities for emotion recogni-
tion. Previous works [3], [8], [12], [16]-[18] focus on four
typical fusion strategies: feature-level fusion, decision-level
fusion, score-level fusion, and model-level fusion, respectively.
Although most of existing fusion methods exhibit good perfor-
mance on audio-visual emotion recognition tasks, they belong
to shallow fusion models with a limited ability in jointly
modeling highly non-linear correlations of multiple inputs with
different statistical properties [19]. It is thus needed to design
deeper fusion methods to produce a more optimized joint
discriminant feature representation for audio-visual emotion
recognition.

To alleviate above-mentioned two problems, the recently-
emerged deep leaning [20] techniques may present a cue.
Due to the large-scale available training data and the
effective training schemes, deep learning techniques have
exhibited powerful feature learning ability in a wide variety
of domains, such as speech recognition, image processing
and understanding, object detection and recognition, efc.
Among them, two representative deep learning models are
DBN [21] and CNN [22], [23], as described below.
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Fig. 1.

DBNSs are built by stacking multiple Restricted Boltzmann
Machines (RBMs) [24]. By using multiple RBMs and the
greedy layer-wise training algorithm [21], DBNs can effec-
tively learn a multi-layer generative model of input data.
Based on this generative model, the distribution properties
of input data can be discovered, and the hierarchical fea-
ture representations characterizing input data can be also
extracted. Due to such good property, DBNs and its variant
called Deep Bolzmann Machines (DBMs) [25] have been
successfully utilized to learn high-level feature representations
from low-level hand-crafted features for multimodal emotion
recognition [26]-[28].

CNNs employ raw image data as inputs instead of hand-
crafted features. CNNs are mainly composed of convolutional
layers and fully connected layers, where convolutional layers
learn a discriminative multi-level feature representation from
raw inputs and fully connected layers can be regarded as a
non-linear classifier. Due to the large-scale available training
data and the effective training strategies introduced in recent
works, CNNs have exhibited significant success in various
vision tasks like object detection and recognition [29]-[32].
However, such CNN models are mostly applied on 2-D images
and fail to capture motion cues in videos, due to the usage
of 2-D spatial convolution. To address this problem, a recent
work [33] has extended CNNs with deep 3-D convolution to
produce a 3D-CNN model. 3D-CNNs compute feature maps
from both spatial and temporal dimensions, and have exhibited
promising spatial-temporal feature learning ability on video
classification tasks [33].

Inspired by the powerful feature learning ability of deep
models, this work proposes a hybrid deep learning framework
composed by CNN, 3D-CNN, and DBN to learn a joint
audio-visual feature representation for emotion classification.
Fig. 1 presents the structure of our framework. It is comprised
of three steps: (1) we convert the raw audio signals into a
representation similar to the RGB image as the CNN input.

LEARNING AFFECTIVE FEATURES WITH A HYBRID DEEP MODEL

Audio Network (CNN)

3031

Pool5

1

Average-pooling

Global video | SVM

features

Video

Pool5

Pool5

i

4096, Al Visible Hidden Output

L Javer _layer _layer

The structure of our proposed hybrid deep model for audio-visual emotion recognition.

Consequently, a deep CNN model pre-trained on large-
scale ImageNet dataset can be fine-tuned on audio emotion
recognition tasks to learn high-level audio segment features.
(2) For multiple contiguous frames in a video segment, a deep
3D-CNN model pre-trained on the large-scale video dataset is
fine-tuned to learn visual segment features for facial expression
recognition. (3) The audio and visual segment features learned
by CNN and 3D-CNN are integrated in a fusion network built
with a deep DBN, which is trained to predict correct emotion
labels of video segments. Finally, we adopt the outputs of
the last hidden layer of a DBN as the audio-visual segment
feature. Average-pooling is employed to aggregate all segment
features to form a fixed-length global video feature. Then, a
linear SVM is used for video emotion classification. Note that,
a DBN is used to fuse audio-visual features, rather than to
classify the emotion of the whole video sample.

Learning audio-visual features for emotion recognition
is one of the critical steps in bridging the emotional gap.
Previous works focus on using low-level hand-crafted features,
which have been verified not discriminative enough to human
emotions. In contrast, this work aims at automatically learning
a joint audio-visual feature representation from raw audio and
visual signals using a hybrid deep learning framework. The
hybrid deep learning model converts the raw 1-D audio signals
into a 2-D representation and integrates CNN, 3D-CNN, and
DBN for audio-visual feature learning and fusion. It thus also
presents a new method of transforming 1-D audio signals into
the suitable input of CNN that conventionally processes 2-D
or 3-D images. Experimental results indicate that our learned
features present promising performance. The success of this
work also guarantees further investigation in this direction.

The remainder of this paper is organized as follows. The
related works are reviewed in Section II. Section III present
our hybrid deep learning model for affective feature learning
in detail. Section IV describes the experimental results. The
conclusions and future work are given in Section V.



3032

II. RELATED WORK

An audio-visual emotion recognition system generally
consists of two important steps: feature extraction and
multimodality fusion. In the following parts, we review
related works focusing on these two steps, respectively.

A. Feature Extraction

The widely-used audio affective features can be categorized
into prosody features, voice quality features, and spectral fea-
tures [34], respectively. Pitch, intensity, energy, and duration
time are popular prosody features, as they are able to reflect
the rhythm of spoken language. The representative voice
quality features include formants, spectral energy distribution,
harmonics-to-noise-ratio, and so on. Mel-frequency Cepstral
Coefficient (MFCC) is the most well-known spectral features
since it is used to model the human auditory perception
system. Zeng et al. [4] extract 20 audio features including
pitch, intensity, and the first four formants and their band-
widths for audio emotion recognition. Wang and Guan [3] and
Wang et al. [16] employ pitch, intensity, and the first 13 MFCC
features on audio feature extraction tasks. Similar works,
which extract prosody features, voice quality features and
spectral features for audio emotion recognition, can be also
found in [12] and [35]-[38], respectively.

Visual feature extraction methods can be summarized into
two categories according to the format of inputs that are static
or dynamic [39], [40]. For static images, the well-known ones
are appearance-based feature extraction methods. These meth-
ods adopt the whole-face or specific regions in a face image
to describe the subtle changes of the face such as wrinkles
and furrows. Among them, Gabor wavelet representation [3],
[16], [37], [41], Local Binary Patterns (LBP) [42] and its
variants such as Local Phase Quantization (LPQ) [12], [43]
are two representative appearance-based feature extraction
methods. Wang and Guan [3] and Wang et al. [16] adopt a
Gabor filter bank of 5 scales and 8 orientations to extract
high-dimensional Gabor coefficients from each facial image.
In recent years, CNNs are used to extract facial features from
static facial images as visual features [44]. Ding et al. [44]
use a Long Short-Term Memory (LSTM) [45] for audio
emotion recognition, and a CNN for video feature extraction,
and finally fuse audio and visual modality at score-level.
For dynamic image sequences representing deformations and
facial muscle movements, the popular visual features are
facial animation parameters or motion parameters. In [5],
34 motion parameters of head, eyebrows, eyes, and mouth are
collected as visual features from each facial image in dynamic
image sequences. In [46], 18 facial animation parameters are
extracted with a facial feature tracking technique performed
on dynamic image sequences in video.

B. Multimodality Fusion

Multimodality fusion is to integrate audio and visual modal-
ities with different statistical properties. Existing fusion strate-
gies [12], [16]-[18] can be summarized into four categories,
i.e., feature-level fusion, decision-level fusion, score-level
fusion, and model-level fusion, respectively.
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Feature-level fusion is the most common and straightfor-
ward way, in which all extracted features are directly con-
catenated into a single high-dimensional feature vector. Then,
a single classifier can be trained with this high-dimensional
feature vector for emotion recognition. Feature-level fusion
is thus also called Early Fusion (EF). A substantial number
of previous works [3], [5], [16], [47], [48] have testified the
performance of feature-level fusion on audio-visual emotion
recognition tasks. However, because it merges audio and visual
features in a straightforward way, feature-level fusion can
not model the complicated relationships, e.g., the difference
on time scales and metric levels, between audio and visual
modalities.

Decision-level fusion aims to combine several unimodal
emotion recognition results through an algebraic combina-
tion rule. Specifically, each input modality is modeled inde-
pendently with an emotion classifier, then these unimodal
recognition results are combined with certain algebraic rules
such as “Max”, “Min”, “Sum”, efc. Thereby, decision-level
fusion is also called as Late Fusion (LF). Previous works
Mansoorizadeh and Charkari [5], Zhalehpour et al. [12],
Wang et al. [16], Schuller et al. [47], and Busso et al. [48],
have adopted decision-level fusion in audio-visual emo-
tion recognition. Nevertheless, decision-level fusion can not
capture the mutual correlation among different modalities,
because these modalities are assumed to be independent.
Therefore, decision-level fusion does not conform to the fact
that human beings show audio and visual expressions in
a complementary redundant manner, rather than a mutually
independent manner.

Score-level fusion, as a variant of decision-level fusion, has
been recently employed for audio-visual emotion recognition
[16], [18]. In [16], an equally weighted summation is adopted
to the obtained class score values. The emotion category
corresponding to the maximum value in this fused score vector
is taken as the final predicted category. Note that, score-level
fusion is implemented by combining the individual classi-
fication scores, which indicate the likelihood that a sample
belongs to different classes. By contrast, decision-level fusion
is performed by combining multiple predicted class labels.

Model-level fusion, as a compromise between feature-level
fusion and decision-level fusion, has also been used for
audio-visual emotion recognition. This method aims to obtain
a joint feature representation of audio and visual modalities.
Its implementation mainly depends on the used fusion model.
For instance, Zeng et al. [4] employ a Multi-stream Fused
Hidden Markov Models (MFHMM) to implement model-level
fusion. This MFHMM combines bimodal information from
audio and visual streams in terms of the maximum entropy
principle and the maximum mutual information criterion.
Lin et al. [8] employ an error weighted semi-coupled
Hidden Markov Models (HMM) to fuse audio and visual
streams for emotion recognition. In [46], a Tripled Hidden
Markov Models (THMM) model is adopted to perform
audio-visual emotion recognition. As for neural networks,
model-level fusion is performed by first concatenating feature
representations of different hidden layers of neural networks
corresponding to multiple input modalities. Then, an additional
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hidden layer is added to learn a joint feature representation
from the concatenated feature representations [26]-[28].
Limited by the shallow structure like the maximum entropy
principle [4] and single hidden layer [26]-[28], existing model-
level fusion methods are still not effective in modeling highly
non-linear correlations between audio and visual modalities.

C. Summary

From the above-mentioned works, we can make the follow-
ing two summarizations.

First, low-level hand-crafted features are widely-used for
audio and visual emotion recognition. However, these hand-
crafted features can not sufficiently and efficiently discriminate
emotions. It is thus desirable to develop automatic feature
learning algorithms to obtain high-level affective features.
CNNs [23] automatically learn features from raw pixels. With
raw Mel-spectrogram as inputs, CNNs may present a cue
for high-level audio feature extraction. CNNs have exhib-
ited promising performance on feature learning from static
images [44]. However it can not directly capture motion cues
in videos. To address this issue, a 3D-CNN [33], which com-
putes feature maps from both spatial and temporal dimensions,
may be a possible solution.

Second, Most of existing fusion methods belong to the
shallow fusion method, which can not effectively model
the complicated non-linear joint distribution and correlations
of multiple modalities [19], e.g., the feature concatenation.
Therefore, it is necessary to develop deep fusion methods
that leverage deep models for feature fusion. To alleviate
this problem, it is hence needed to design a deep fusion
model in which multiple meaningful fusion operations can be
performed to learn the complicated joint audio-visual feature
representation. Because each RBM in a DBN can be used to
learn the joint audio-visual feature representation, it may be
feasible to employ a DBN consisting of multiple layers of
RBMs as a deep fusion model.

III. PROPOSED METHOD

As described in Fig. 1, our hybrid deep learning model
contains two individual input streams, i.e., the audio network
processing audio signals with a CNN model, and the visual
network processing visual data with a 3D-CNN model. The
outputs of fully connected layers of these two networks are
fused in a fusion network built with a DBN model.

Due to the limited amount of labeled data, we first employ
the existing CNN and 3D-CNN models pre-trained on
large-scale image and video classification tasks to initialize
our CNN and 3D-CNN, respectively. Then, fine-tuning
is conducted for these two CNN models with the labeled
emotion data. To this end, we adopt the AlexNet [23] for CNN
network initialization, and the C3D-Sports-1M model [33]
for 3D-CNN network initialization, respectively. The
AlexNet [23] has 5 convolution layers (Conv1-Conv2-Conv3-
Conv4-Conv5), 3 max-pooling layers (Pooll-Pool2-Pool5),
and 3 fully connected (FC) layers. The first two FC layers
(fc6, fc7) consist of 4096 units and the last FC layer (fc8) has
1000 dimensions corresponding to 1000 image categories.

3033

The C3D-Sports-1M model [33] contains 8 convolution layers
(Convla-Conv2a-- - --Conv5a-Conv5b), 5 max-pooling layers
(Pool1-Pool2-Pool3-Pool4-Pool5), followed by 3 FC layers.
In this 3D-CNN, its fc6, fc7 also have 4096 units, and its
fc8 corresponds to 487 video categories. To initialize the
audio and visual networks in Fig. 1, we copy the initial
network parameters from the corresponding pre-trained
CNN and 3D-CNN models mentioned above. Note that the
fc8 parameters in these two pre-trained models are not used.

In the followings, we describe how to generate the inputs of
both CNN and 3D-CNN, and how this hybrid deep learning
model is trained.

A. Generation of Network Inputs

Since emotional video samples may have different duration,
we split each of them into a certain number of overlapping
segments and then learn audio-visual features from each
segment. This also enlarges the amount of training data for
our deep models. In detail, we first extract the whole log
Mel-spectrogram from audio signals. The extracted log Mel-
spectrogram is computed with the output of Mel-frequency
filter banks, and shows more discriminant power than MFCC
for audio emotion recognition [49]. Then, we use a fixed
context window to split the spectrogram into overlapping
segments which are converted into the suitable input of CNN.
The corresponding video segment in this context window is
used as the input of 3D-CNN after preprocessing. In this
way, for each video segment, we produce its Mel-spectrogram
segment and video frames in the framework as illustrated in
Fig. 1. In the followings, we present how these audio and
visual cues are processed in detail.

1) Audio Input Generation: It is known that the 1-D
spectrogram, represented by the squared magnitude of the
time-varying spectral characteristics of audio signals, con-
tains tremendous low-level acoustic information related to the
speaker’s emotion expression, such as energy, pitch, formants,
and so on [50]. However, CNNs are commonly used to process
2-D or 3-D images in vision tasks [23]. To leverage the
available CNN models and make our deep model initialization
easier, it is hence intuitive to transform the 1-D spectrogram
into a 2-D array as the input of CNN.

Recently, Abdel-Hamid e al. [51] have employed a CNN
with a shallow 1-layer structure for speech recognition.
Specially, the authors extract the log Mel-spectrogram from
raw audio signals and reorganize it into a 2-D array as
the input of CNN. Then 1-D convolution can be applied
along the frequency axis. Nevertheless, audio emotion
recognition is different from speech recognition [51]. First,
1-D convolution operation along the frequency axis can not
capture the useful temporal information along the time axis
for emotion recognition. Second, a speech segment length of
15 frames (about 165 ms) widely-used for speech recognition
does not carry sufficient temporal cues for distinguishing
emotion. Some previous studies also show that 250 ms is the
suggested minimum segment length required for identifying
emotion [52], [53].

As shown in Fig. 1, to convert the 1-D audio signals
into the suitable input of CNN, we extract three channels
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of log Mel-spectrogram segment (i.e., the static, delta and
delta — delta) with size 64 x 64 x 3. Specifically, for a
given utterance we adopt 64 Mel-filter banks from 20 to
8000 Hz to obtain the whole log Mel-spectrogram by using
a 25ms Hamming window and a 10ms overlapping. Then,
a context window of 64 frames is used to divide the whole
log Mel-spectrogram into audio segments with size 64 x 64.
A shift size of 30 frames is used during segmentation, i.e.,
two adjacent segments are overlapped with 30 frames. Each
divided segment hence has a length of 64 frames and its time
duration is 10ms x (64—1)425ms = 655ms. In this case, the
divided segment length is 2.5 times longer than the suggested
minimum segment length (250 ms) for identifying emotion
[52], [53]. Consequently, each divided segment conveys suffi-
cient temporal cues for identifying emotion. The produced 2-D
Mel-spectrogram segment with size 64 x 64 is taken as the first
channel (static) among three channels of Mel-spectrogram.

After extracting the static Mel-spectrogram segment
with size 64 x 64, we compute its first-order (delta) and
second-order (delta — delta) frame-to-frame time derivatives.
This is used to better capture the temporal information of
Mel-spectrogram, i.e., the feature trajectories over time, as
usually done in speech recognition tasks [54].

To calculate the delta coefficients of the static 2-D Mel-
spectrogram segment, the following regression formula is
used:

N
Z:I n(Crn — Cr—n)
n—
di = _ : )
2> n?
n=1
where d; is a delta coefficients of frame ¢ computed using the
static Mel-spectrogram segment coefficients ¢;4, to ¢;—,. The
value of N represents the regression window with a typical
value of 2. Then, in the same way we can calculate the
delta—delta coefficients from the obtained delta coefficients.
As a result, we can obtain three channels of Mel-spectrogram
segment with size: 64 x 64 x 3, as illustrated in Fig. 1.

This extracted Mel-spectrogram can be regarded as the
RGB image feature representation of audio data. It has two
desired properties. First, we can use it to implement the 2-D
convolution operation along the frequency and time axis,
rather than the 1-D convolution operation. Second, as the
RGB image feature representation, it is convenient to resize
it into the suitable size as the input of the pre-trained CNN
models. Specifically, we initialize the audio network with
the AlexNet [23], which has the input size 227 x 227 x 3.
Therefore, we resize the original spectrogram with size
64 x 64 x 3 into new size: 227 x 227 x 3 with bilinear
interpolation. In the followings, we denote the audio input as a.

2) Visual Input Generation: After splitting the video sample
into segments, we use the video segments as the 3D-CNN
input. For each frame in the video segment, we run face
detection, estimate the eye distance, and finally crop a RGB
face image of size 150 x 110 x 3, as done in [55] and [56].
In detail, we employ the robust real-time face detector pre-
sented by Viola and Jones [57] to perform automatic face
detection on each frame. From the results of automatic face
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detection, the centers of two eyes can be located in a typical
up-right face. Then, we calculate the eye distance of facial
images and normalized it to a fixed distance of 55 pixels. For
a facial image, it is usually observed that its height is roughly
three times longer than the eye distance, whereas its width
is roughly twice. Consequently, based on the normalized eye
distance, a resized RGB image of 150 x 110 x 3 is finally
cropped from each frame. To conduct a fine-tuning task, the
cropped facial image for each frame is resized to 227 x 227 x 3
as the input of the pre-trained 3D-CNN model. Similar resize
operation is also used in a previous work [58].

To make sure each video segment has 16 frames, i.e., the
input size in C3D-Sports-1M model [33], we delete the first
and last L*Tlﬁ overlapping frames if a video segment has
L > 16 frames. On the contrary, for L < 16 we repeat
the first and last % overlapping frames. It should be noted
that, since we employ 64 audio frames in a context window to
divide the extracted log Mel-spectrogram into audio segments,
the durance of each segment is 655ms corresponding to about
20 video frames in each video segment, i.e., 0.655 s X
30 frame/s. In this case, our implementation does not need
to deal with the case with L < 16 frames. By contrast, when
using 15 audio frames of Mel-spectrogram segments corre-
sponding to about 5 video frames (L = 5) for experiments,
we need to repeat the first 5 and last 6 overlapping frames.
We denote the visual input as v.

B. Network Training

Given audio-visual data X={(a;, vi, yi)}i=1 2.... x» Where i
is the index of the divided audio-visual segments, a; and v;
denote the audio data and visual data, respectively, and y;
represents the class label of a segment. Note that, we use the
class label of the global video sample as the class label of a
segment y;. Let Y4 (a;; 04) denotes the 4096-D output of fc7
in audio network (denoted as A) with network parameters 6.
Similarly, TY (vi; HV) denotes the 4096-D visual feature (fc7)
of the visual network (denoted as V) with network parame-
ters V. During network training, we first train the audio and
visual networks respectively in the first stage, then jointly train
the fusion network in the second stage.

1) Training Audio and Visual Networks: The audio and
visual networks are first trained individually with a fine-
tuning scheme. For the CNN and 3D-CNN, we replace their
final fully connected layers, i.e., fc8 layer, with two new
FC layers, which correspond to the emotion categories on
target audio-visual emotion recognition dataset. For instance,
for 6 emotions, fc8 should produces 6 outputs. Accordingly,
we predict the emotional labels with the audio and visual
networks, respectively, then calculate the prediction errors and
finally update the network parameters to minimize the negative
log likelihood L over the training data.

On audio training data, we solve the following minimization
problem to update the audio network A with back propagation:

K

. A A . pA )
WrgngZ;L(softmax(W Y 4(ai; 04)), yi), (2)
1=
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where W4 is the weight values of the softmax layer, and the
softmax log-loss is calculated by

[
L(A,y) == yjlogy}), 3)
=1

where y; is the j-th value of the ground truth label, y;‘ rep-
resents the j-th output value of the softmax layer for the
network A, and / represents the total number of class labels.

On visual training data, we solve a minimization problem
similar to the audio network, since a 3D-CNN has the same
minimization problem as CNNs. In this way, we can minimize
the prediction error of V to update the visual network V.

During the first stage of training, we can separately update
the parameters in the audio and visual networks, producing
more discriminative audio and visual features, i.e., Y4 (a;; 64)
and TV(U,-; <9V). To fuse the audio and visual features, we
proceed to describe the training of our fusion network.

2) Training Fusion Network: After training the audio and
visual networks, we discard their fc8 layers and merge their
fc7 layers into the fusion network illustrated in Fig. 1. In this
way, two 4096-D features, i.e., Y4 (a;;04) and TV (v;;0Y)
are concatenated to constitute a 8192-D feature as the input
of the fusion network f ([TiA, Tiv]; 0F) (denoted as F) with
network parameters 0F . Here, TiA =74 (a;; HA) and Tiv =
TV (v;; 9\/).

Our fusion network is built with a deep DBN model,
which aims to capture highly non-linear relationships across
modalities, and form a joint discriminant feature representation
for emotion classification. It contains one visible layer, two
hidden layers and one output layer (i.e., softmax layer), as
depicted in Fig. 1. This DBN model is constructed by stacking
two RBMs, each of which is a bipartite graph and its hidden
nodes are able to obtain higher-order correlation of input data
of visible nodes.

Following [21], we train the fusion network through two
training steps. First, an unsupervised pre-training is imple-
mented in the bottom-up manner by using a greedy layer-wise
training algorithm [21]. This unsupervised pre-training aims
to minimize the following reconstruction error, i.e.,

m
wF

>

K

. /

in, EC(Zi,zi), €)
1=

where K is the number of training samples, C(z;, z;) denotes
the cross-entropy loss function between the input data z; and
the reconstructed data z;. Here, C(z;, ) is defined as

D
Czirz) = D (=zijlogz 4+ (1 — zia) log(1 — 2} 1)), (5)
d=1
Second, after pre-training, each layer of RBMs is initialized.
Then, a supervised fine-tuning is performed to optimize the
network parameters. In detail, we take the last hidden layer
output as the input of a classifier, and compute the classifi-
cation error. Then, back propagation is used to readjust the
network parameters.
Since the input features of DBNs are continuous values, we
use a Gaussian-Bernoulli RBM with 4096 hidden nodes for its
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first layer, a Bernoulli-Bernoulli RBM with 2048 hidden nodes
for its second layer, outputting 2048-D features for emotion
classification. In this way, we get a 8192-4096-2048-C
structure of DBNs, which is used to identify C emotions on
target audio-visual emotional datasets. Note that, we fix the
parameters in A and V during the second stage training, and
update the parameters of the fusion network F to produce
more accurate emotional predictions, resulting in better
feature fusion results.

C. Emotion Classification

After finishing training the fusion network, a 2048-D joint
feature representation can be computed on each audio-visual
segment. Since each audio-visual video sample has a different
number of segments, average-pooling is applied on all segment
features from each video sample to form the fixed-length
global video feature representation. Our experiments compared
average-pooling and max-pooling, and found average-pooling
performs better. Therefore, we employ average-pooling to
process features extracted from segments. Based on this global
video feature representation, the linear SVM classifier can be
easily employed for emotion identification.

IV. EXPERIMENTS

To testify the effectiveness of our proposed hybrid deep
learning networks for audio-visual emotion recognition, we
conduct emotion recognition experiments on three public
audio-visual emotional datasets, including the acted RML
dataset [3], the acted eNTERFACEOS dataset [59], and the
spontaneous BAUM-1s dataset [12]. To evaluate the perfor-
mance of our proposed method, we present the unimodal
audio and video emotion recognition results, and then give
the multimodal emotion recognition results integrating audio
and video cues.

A. Datasets

RML: The RML audio-visual dataset [3] is composed of
720 video samples from 8 subjects, speaking the six different
languages (English, Mandarin, Urdu, Punjabi, Persian, and
Italian). It contains the six emotions: anger, disgust, fear, joy,
sadness, and surprise. The audio samples are recorded with a
sampling rate of 22,050 Hz with 16-bit resolution and mono
channel. At least two participants who do not know the cor-
responding language are employed in human perception test
to evaluate whether the correct emotion is expressed. A video
sample is added to this dataset, when all testing subjects are
able to perceive the intended emotion categories. The average
duration of each video sample is around 5 seconds. The size
of original video frame is 720 x 480 x 3. In our experiments,
for each frame in a video segment, we crop a facial image
with size 150 x 110 x 3, as described in Section III-A.
Fig. 2 shows some samples of the cropped facial images on
the RML dataset.

eNTERFACEOS5: The eNTERFACEO5 [59] audio-visual
acted dataset includes the six emotions, i.e., anger, disgust,
fear, joy, sadness, and surprise, from 43 subjects with 14 differ-
ent nationalities. It contains 1290 video samples. Each audio
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Fig. 2. Some samples of the cropped facial images from the RML dataset.
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Fig. 3. Some samples of the cropped facial images from the eNTERFACEOS
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dataset.

Some samples of the cropped facial images from the BAUM-I1s

sample is recorded with a sampling rate of 48,000 Hz with
16-bit resolution and mono channel. Each subject is asked to
listen to the six successive short stories, each of which is used
to induce a particular emotion. Two experts are employed to
evaluate whether the reaction expresses the intended emotion
in an unambiguous way. The speech utterances are pulled from
video files of the subjects speaking in English. The video files
are in average 3-4 seconds long. The size of original video
frames is 720 x 576 x 3. Fig. 3 gives some samples of the
cropped facial images on the eNTERFACEOQS dataset.

BAUM-1s: The BAUM-1s [12] audio-visual spontaneous
dataset contains 1222 video samples from 31 Turkish subjects.
The dataset has the six basic emotions (joy, anger, sadness,
disgust, fear, surprise) as well as boredom and contempt.
It also contains four mental states, namely unsure, thinking,
concentrating and bothered. To obtain spontaneous audio-
visual expressions, emotion elicitation by watching films is
employed. The size of original video frames is 720 x 576 x 3.
Similar to [3], [12], and [59], this work focus on recognizing
the six basic emotions, which appear in total 521 video clips.
Fig. 4 gives some samples of the cropped facial images on the
BAUM-1s dataset.
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We divide a video sample into a certain number of audio
and video segments as the input of CNN and 3D-CNN, respec-
tively. Because multiple segments can be generated from each
video sample, the amount of training data will be enlarged.
For example, we generate 11,316 audio-video segments from
720 video samples on the RML dataset, generate 16,186
segments from 1290 video samples on the eNTERFACEOS5
dataset, and generate 6386 segments from 521 video samples
on the BAUM-1s dataset, respectively.

B. Experimental Setup

For training our deep models, we use a mini-batch size
of 30, and a stochastic gradient descent with stochastic
momentum of 0.9. The learning rate is 0.001 for fine-
tuning. The maximum number of epochs is set to 300 for
CNNs, 400 for 3D-CNNs, and 100 for DBNs, respectively.
For the “FC” fusion method, the dropout parameter is set
to 0.3. We implement CNNs with the MatConvNet toolbox, !
3D-CNNs with the Caffe toolbox,2 as well as DBNs with
the DeeBNet toolbox.> One NVIDIA GTX TITAN X GPU
with 12GB memory, is used to train these deep models. For
emotion classification, we utilize the LIBSVM package,* to
perform the SVM algorithm with the linear kernel function
and one-versus-one strategy. As suggested in [60], we adopt
the subject-independent Leave-One-Subject-Out (LOSO) and
Leave-One-Speakers-Group-Out (LOSGO) cross-validation
strategies for experiments, which are commonly used in real-
world applications. In detail, on the RML and eNTERFACEQS
datasets, we employ the LOSO scheme. On the BAUM-1s
dataset, we adopt the LOSGO scheme with five speaker
groups, as done in [12]. The average accuracy in the test-
runs are finally reported to evaluate the performance of all
compared methods.

C. Experimental Results and Analysis

In this section, we present experimental results of unimodal-
ity and multimodality features on the RML, eNTERFACEOQS,
and BAUM-1s datasets, respectively.

1) Unimodality Performance: To testify the effectiveness of
feature learning with deep models, we present the recognition
performance of two types of features, i.e., features extracted
with the original AlexNet and C3D-Sports-1M models, and
the learned features extracted with the fine-tuned AlexNet and
C3D-Sports-1M models. For the features extracted with the
original AlexNet and C3D-Sports-1M models, we directly take
our generated audio and visual data as the inputs of AlexNet
and C3D-Sports-1M models, producing 4096-D features from
the outputs of their fc7 layers, respectively.

Table I shows the recognition performance of these features
on the RML, eNTERFACEOS, and BAUM-1s datasets. From
the results in Table I, we can see that the learned features
with fine-tuned deep models (AlexNet and C3D-Sports-1M)

available at http://www.vlfeat.org/matconvnet/
available at http://caffe.berkeleyvision.org/
available at http://ceit.aut.ac.ir/ keyvanrad/

1
2
3
4available at https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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TABLE I

SUBJECT-INDEPENDENT UNIMODALITY RECOGNITION ACCURACY (%)
ON THREE DATASETS. Alex Ayqio AND C3Dvysuq1 ARE AUDIO AND
VISUAL FEATURES EXTRACTED BY THE ORIGINAL PRE-TRAINED
ALEXNET AND C3D-SPORTS-1M MODELS, RESPECTIVELY.
Anet AND Vnet ARE THE LEARNED FEATURES OF THE
FINE-TUNED AUDIO NETWORK (CNN) AND VISUAL
NETWORK (3D-CNN), RESPECTIVELY

[Unimodality| Features [RML]eNTERFACE05[BAUM-Is]

. Alet Avaio |59.46 5133 36.10
Audio Anet  [66.17 78.08 .26
Visual  1C3DV isuat|53.03 4897 41.69
Vnet  68.0 5435 50.11

TABLE II

SUBJECT-INDEPENDENT AUDIO EMOTION RECOGNITION
PERFORMANCE (%) COMPARISONS WITH PREVIOUS
WORKS USING HAND-CRAFTED FEATURES ON THREE
DATASETS. Anet 1S THE LEARNED FEATURES OF
THE FINE-TUNED AUDIO NETWORK (CNN)

[ Datasets | Refs. | Audio features [Accuracy|
Gao et al. ,[36] Prosody 51.04
RML Elmadany et al., [38 Prosody 56.25
Elmadany et al., [37 PNCC 58.33
Zhang et al., [62] LLD 61.86
Ours Anet 66.17
Zhalehpour ef al.,[12] |MFCC,RASTA-PLP| 72.95
eNTERFACEO5 Schuller et al., [35] Prosody, MFCC 72.40
Mansoorizadeh et al., [5] Prosody 43.00
Bejani et al., [14] Prosody, MFCC 54.99
Ours Anet 78.08
Zhalehpour et al.,[12] |[MFCC,RASTA-PLP| 29.41
BAUM-1s Ours Anet 42.26

significantly outperform the features extracted with the origi-
nal pre-trained deep models. In detail, our fine-tuning strategy
improves the accuracies on the RML dataset from 59.46%
to 66.17% for audio features, and 53.03% to 68.09% for
visual features, respectively. Similarly, on the eNTERFACEOQS
dataset, our method also makes an improvement from 51.33%
to 78.08% for audio features, and 48.97% to 54.35% for visual
features, respectively. On the BAUM-1s dataset, improvements
of 6.16% for audio features, and 8.42% for visual features are
achieved, respectively. The experimental results demonstrate
the effectiveness of our feature learning strategy, i.e., using
deep model to learn emotional features. Our learned features
have potential to leverage the powerful learning ability of deep
models to extract more discriminative cues than the manually
designed features. The experimental results also show the
validity of our fine-tuning strategy. Fine-tuning allows deep
models pre-trained on other domains to learn meaningful
feature representations for emotion recognition.

To present the advantages of the learned features, we
directly compare our performance with the reported results of
previous works using hand-crafted features on these datasets.
Because these compared works use the same experimen-
tal settings with ours, i.e., subject-independent test-runs, we
take their reported results for comparison. It is not suit-
able to compare our work with previous works adopting
subject-dependent test-runs. Table II and Table III separately
give performance comparisons of audio and visual emotion
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TABLE III

SUBJECT-INDEPENDENT VISUAL EMOTION RECOGNITION
PERFORMANCE (%) COMPARISONS WITH PREVIOUS
WORKS USING HAND-CRAFTED FEATURES ON
THREE DATASETS. Vnet IS THE LEARNED
FEATURES OF THE FINE-TUNED
VISUAL NETWORK (3D-CNN)

[ Datasets | Refs. [Visual features| Accuracy |
RML Elmadany et al., [37] |Gabor wavelet| 64.58
Zhang et al., [62] LBP 56.90
Ours Vnet 68.09
Zhalehpour et al.,[12] LPQ 42.16
eNTERFACEOS Mansoorizadeh et al., [5]]| Facial points | 37.00
Bejani ef al., [14] QIM 39.27
Ours Vnet 54.35
Zhalehpour et al.,[12] LPQ 45.04
BAUM-1s Ours Vet 50.11

recognition between our learned features and the correspond-
ing hand-crafted features.

From Table II, we can see that our learned audio features
with CNNs outperform the hand-crafted audio features widely-
used for audio emotion recognition [5], [12], [35]-[38], [61],
such as prosody features, MFCC, Relative Spectral Trans-
form - Perceptual Linear Prediction (RASTA-PLP), Power
Normalized Cepstral Coefficients (PNCC), and other acoustic
Low-level Descriptors (LLD). This shows that our audio
features learned by the fine-tuned AlexNet model is more
discriminative than the hand-crafted audio features for audio
emotion classification. In addition, the promising performance
of our learned audio features clearly indicates that it is
reasonable to employ three channels of Mel-spectrogram with
size 64 x 64 x 3 as the input of AlexNet. It is also interesting to
know that AlexNet trained on image domain can be applied to
audio feature extraction. This might be because of the powerful
feature learning ability of AlexNet, e.g., higher-level con-
volutions progressively infer semantics from larger receptive
fields. The extracted Mel-spectrogram is similar to the RGB
image representation. This representation makes it possible
to first extract meaningful low-level time-frequency features
by low-level 2-D convolutions, then infer more discriminative
features by higher levels of convolutions. It is also possible
that, three channels of Mel-spectrogram present emotions as
certain shapes and structures, which thus can be effectively
perceived by AlexNet trained on the image domain. This thus
presents a new method of transforming 1-D audio signals into
the suitable input of CNN that conventionally processes 2-D
or 3-D images.

From Table III, it can be observed that our learned visual
features with 3D-CNNs yield better performance than the
compared hand-crafted features [5], [12], [14], [37], [61], such
as Gabor wavelet, LBP, LPQ, facial points and Quantized
Image Matrix (QIM). This demonstrates the advantages
of our learned visual features produced by the fine-tuned
C3D-Sports-1M model, which presents more discriminative
power than the hand-crafted visual features for visual emotion
recognition. The above experiments clearly show that deep
model is powerful in feature learning and produces more
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TABLE IV

AUDIO EMOTION RECOGNITION PERFORMANCE (%) COMPARISONS
BETWEEN MEL-SPECTROGRAM SEGMENTS WITH
SIZES 64 x 64 x 3 AND 64 x 15 x 3

[Mel-spectrogram | RML [eNTERFACE05| BAUM- 15|

64 x 15 x 3 [50.06 52.33 33.64
64 x 64 x 3 [66.17 78.08 42.26

discriminative features than manually designed feature
extraction models. However, deep models require a large
amount of training data. This thus motivates us to transfer pre-
trained models on other domain for emotional feature learning.

Table II and III show that our learned features are more
discriminative to the hand-crafted features on emotion recog-
nition tasks. However, our feature learning needs a large
training set, and is easier to suffer from overfitting than
the hand-crafted features. Moreover, extracting features with
deep models requires more expensive computation due to the
massive network parameters.

To explain why we extract Mel-spectrogram segments with
a length of 64 frames rather than 15 frames widely used in
speech recognition [51], we compare the performance of two
types of extracted Mel-spectrograms with different length, i.e.,
64 x 64 x 3 and 64 x 15 x 3. The experimental results are
summarized in Table IV. From Table IV, we can see that the
extracted Mel-spectrogram with size 64 x 64 x 3 clearly outper-
forms the other one. This indicate that the segment length of
15 frames is not suitable for audio emotion recognition. This
might be because 15 frames is too short to convey sufficient
information for distinguishing emotions [52], [53].

2) Multimodality Performance: To verify the effectiveness
of our fusion method, we compare our method with four
multimodality fusion schemes, i.e., feature-level fusion,
decision-level fusion, score-level fusion, as well as our
recently-presented method in [61]. Note that, this work
employs a deep DBN model to build the fusion network,
whereas [61] uses two FC layers.

Our goal is to recognize the emotion of the global video
samples. Therefore, feature fusion methods are required to
aggregate features extracted on audio-visual segments into a
global video feature representation. Then, a linear SVM could
be used to perform emotion classification on the generated
global video features. To this end, average-pooling is used, as
done in Section III-C. Fig. 5 gives the structure of feature-level
fusion and decision-level fusion with our two CNN models.
Note that, the structure of score-level fusion is completely
similar to decision-level fusion.

For decision-level fusion, six typical ensemble
rules [62], [63], including “Majority vote”, “Max”, “Sum”,
“Min”, “Average” and “Product” are testified. For more
details about the six ensemble rules, refer to [62] and [63].
On decision-level fusion tasks, we first investigate the
performance of each ensemble rule, and then find the best
one, which is used to generate the reported performance.
Table V presents the performance comparison of six ensemble
rules on our learned features. As shown in Table V, the
“Product” rule yields best performance. Therefore, in the
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Fig. 5. The structure of feature-level fusion (a) and decision-level fusion (b)
with two CNN models.

TABLE V

MULTIMODALITY EMOTION RECOGNITION PERFORMANCE (%)
COMPARISON OF S1X ENSEMBLE RULES AT DECISION-LEVEL
FUSION WITH THE LEARNED FEATURES OF Anet AND Vnet

[ Decision-level [RML [eNTERFACE05 [BAUM-Is ]|

Majority vote|63.58 69.14 45.35
Max 72.05 80.31 48.89
Sum 72.79 80.85 50.01
Min 72.91 78.76 50.08

Average |72.79 80.85 50.01
Product  [74.60 81.62 51.73
TABLE VI

SUBJECT-INDEPENDENT MULTIMODALITY EMOTION RECOGNITION
ACCURACY (%) WITH THE LEARNED FEATURES OF Anet AND Vnet.
FC DENOTES THE FUSION METHOD BUILT WITH TWO
FC LAYERS IN [61], DBN DENOTE THE FUSION
METHOD BUILT WITH A DBN MODEL

[Fusion method[RML [eNTERFACEO5|BAUM-Is|

Feature-level |74.04 81.02 51.72
Product 74.60 81.62 51.73
Score-level [73.92 80.85 51.58
FC 78.84 83.55 52.35
DBN 80.36 85.97 54.57

following experiments, we only report the performance of the
“Product” rule for decision-level fusion.

We implement score-level fusion referring to the schemes
in [16]. Specifically, a equally weighted summation is adopted
in terms of the obtained class score values, as described below:

Scorel®sion = 0.58core™i® +0.5Score’ e, 6)

Table VI shows the recognition performance of audio-visual
modalities by using different fusion strategies. From Table VI,
we can observe that the FC fusion method [61] outperforms
feature-level fusion, decision-level fusion (Product), and score-
level fusion. This demonstrates the advantages of the fusion
network built with two FC layers. This also implies that the
FC fusion network is able to learn a joint audio-visual feature
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Fig. 6. Confusion matrix of multimodality emotion recognition results when
DBN performs best on the RML dataset.

representation from the outputs of two fine-tuned deep models
for emotion identification through the back-propagation learn-
ing algorithms.

It also can be observed from Table VI that, our DBN fusion
method outperforms the other fusion methods. Compared
with feature-level fusion, decision-level fusion, and score-level
fusion methods, the DBN fusion can be regarded as a deep
fusion model. The comparison clearly shows the effectiveness
of the deep fusion method, which shows better feature learning
ability in capturing the highly non-linear relationships across
modalities. This is mainly because of the use of the multi-
layer structure of DBNs, in which multiple RBMs are stacked
to form multiple hidden layers. A RBM is a generative model
representing a probability distribution associated with input
data. Each RBM in a DBN is able to learn the joint probability
distribution of input audio-video data. By using multiple
RBMs and the layer-wise training algorithm, DBNs can effec-
tively learn the non-linear dependencies across modalities, and
results in better fusion of audio-visual features. This finding is
consistent with the one in a previous work [19]. It is desirable
to intuitively visualize the learned weights of our DBN model.
However, the input of our DBNs are audio-visual features,
rather than the semantic images. This make the learned weights
of DBNs hard to interpret intuitively.

DBNSs also outperform the FC fusion method in [61], e.g.,
78.84% vs. 80.36% on the RML dataset, 83.55% vs. 85.97%
on the eNTERFACEOQS5 dataset, and 52.35% vs. 54.57% on the
BAUM-1s dataset, respectively. This advantage might be due
to the unsupervised pre-training in DBNs, which presents local
optimal weights for network initialization, whereas the initial
weights in the FC fusion method are randomly produced.

Fig. 6, Fig. 7 and Fig. 8 present the classification confusion
matrix on three datasets, respectively. Note that, these con-
fusion matrixes are obtained in terms of the average LOSO
or LOSGO recognition results. It is interesting to find that
on the RML dataset, “joy” and “fear” are more difficult to
be identified than the other emotions. This might be because
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Fig. 7. Confusion matrix of multimodality emotion recognition results when
DBN performs best on the eNTERFACEOS5 dataset.

sadness fefar disgust surQrise
anger 278 8.33 13.89
joy 1.70 16.17 383
sadness 14.02 12.20 793 A
fear|  0.00 0.00 25.00 25.00 25.00 25.00
disgust| 15.38 20.00 7.69 26.15 3.08 4
surpriser  5.88 0.00 5.88 17.65 5.88 64.71

Fig. 8. Confusion matrix of multimodality emotion recognition results when
DBN performs best on the BAUM-1s dataset.

the audio-visual cues of ‘joy” and “fear” are not distinct
enough. On the eNTERFACEOQS dataset, “sadness”, “surprise”
and “fear” are recognized with relatively lower accuracy, i.e.,
about 80%, whereas others emotions are identified well with
accuracy of about 90%. On the BAUM-1s dataset, the average
classification accuracy is much lower than the ones of the
other two datasets. This shows that the spontaneous emotions
are more difficult to be recognized than the acted emotions.

In addition to the classification confusion matrix, we com-
pute precision, recall and F-score to further measure the mul-
timodality emotion recognition performance on three datasets.
The experimental results are presented in Table VII, Table VIII
and Table IX, respectively. The results in these three tables
indicate that the three datasets show different difficulties in
recognizing specific emotions. For example, it is easier to
identify “disgust” on the RML dataset than the other two
datasets. It is easier to identify “joy” on the eNTERFACEOS
and BAUM-1s than the RML dataset.
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TABLE VII

MULTIMODALITY PERFORMANCE (%) MEASURE FOR EACH
EMOTION WHEN DBN GIVES AN AVERAGE ACCURACY
OF 80.36% ON THE RML DATASET

[Emotion | Precision|Recall[F-score|

Anger | 8533 [88.70 | 86.98

Disgust | 89.71 [95.50| 92.51

Fear 80.71 |71.33| 75.73

Joy 65.53 [ 6893 67.19

Sadness | 91.03 |83.33| 87.01

Surprise| 83.21 [87.07 | 85.10
TABLE VIII

MULTIMODALITY PERFORMANCE (%) MEASURE FOR EACH EMOTION
WHEN DBN GIVES AN AVERAGE ACCURACY OF 85.97%
ON THE ENTERFACEOQS5 DATASET

[Emotion]Precision|Recall[F-score|

Anger | 89.78 |90.61 | 90.20

Disgust | 91.36 |89.55| 90.45

Fear 75.69 |79.50 | 77.55

Joy 92.55 192.13| 92.34

Sadness | 86.73 |83.93| 85.31

Surprise| 79.95 |79.72| 79.84
TABLE IX

MULTIMODALITY PERFORMANCE (%) MEASURE FOR EACH EMOTION
WHEN DBN GIVES AN AVERAGE ACCURACY OF 54.57%
ON THE BAUM-1s DATASET

[Emotion]Precision|Recall[F-score|

Anger | 27.06 |27.78 | 27.41
Joy 82.03 |[65.11| 72.60
Sadness | 52.49 |53.05]| 52.77
Fear 20.14 |25.00| 22.31
Disgust | 25.65 |[26.15| 25.90
Surprise| 41.93 |64.71| 50.89

D. Effect of Deep Structures in the Fusion Network

The structure of DBNs may heavily affect its performance
of fusing audio-visual modalities. To evaluate the effectiveness
of different deep structures, we present the performance of
three DBN fusion networks: DBN-1 (8192-4096-6), DBN-2
(8192-4096-2048-6), and DBN-3 (8192-4096-2048-1024-6).
Similarly, we also show the performance of three FC fusion
networks corresponding to DBNs: FC-1 (8192-4096-6), FC-2
(8192-4096-2048-6), and FC-3 (8192-4096-2048-1024-6).
For these fusion networks, as done in [61], a dropout layer
is added before the final softmax layer corresponding to
emotion categories. The dropout parameter is set to 0.3 to
reduce over-fitting.

Table X presents the performance comparisons of different
structures in the fusion network. From Table X, we can
see that FC-1 performs best among the three FC fusion
networks. This indicates that FC-1 is more effective than
FC-2 and FC-3 to fuse audio and visual cues. This might be
because with more layers in the FC network, the massively
increasing network parameters make the FC network
prone to over-fitting. For the DBN fusion network, DBN-2
slightly outperforms DBN-3, and yields substantially better
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TABLE X

SUBJECT-INDEPENDENT MULTIMODALITY EMOTION RECOGNITION
ACCURACY (%) OF DIFFERENT DEEP STRUCTURES
IN THE FUSION NETWORK

[Fusion method[RML [eNTERFACEO5|BAUM-1s|

FC-1 78.84 83.55 52.35

FC-2 77.92 82.72 51.50

FC-3 75.67 81.25 50.43

DBN-1 78.50 84.16 51.61

DBN-2 80.36 85.97 54.57

DBN-3 80.10 85.02 53.38
TABLE XI

MULTIMODALITY EMOTION RECOGNITION PERFORMANCE (%)
COMPARISONS WITH STATE-OF-THE-ART WORKS
ON THREE DATASETS

[ Datasets | Refs. [Accuracy |
Sarvestani et al., [13] 72.03
Elmadany et al., [37] 75.00
RML Zhang et al., [67] 7432
Ours 80.36
Sarvestani et al., [13] 70.11
Mansoorizadeh et al., [5]| 71.00
eNTERFACEDS g erar, 1147 [ 77.78
Zhalehpour ef al., [12] 77.02
Ours 85.97
Zhalehpour et al., [12] 51.29
BAUM-Is Ours 54.57

performance than DBN-1. Due to using multiple RBMs and
the effective layer-wise training algorithm [21], the deeper
DBN models, i.e., DBN-2 and DBN-3, exhibit better feature
fusion ability than the 1-layer DBN-1. DBN-3 degrades the
performance of DBN-2 may be because DBN-3 is deeper than
DBN-2, thus involves more network parameters, which are
more difficult to optimize on a small-scale training dataset.

E. Comparisons With the State-of-the-Art Results

We compare our method with some previous works on
three datasets in Table XI. Note that these works also conduct
subject-independent experiments, which are consistent with
our experimental setting. The results in Table XI indicate that
our method is very competitive to the state-of-the-art results.
Specially, on the acted RML and eNTERFACEOQS datasets, our
method outperforms previous works [5], [12]-[14], [37] by
more than about 5%. On the spontaneous BAUM-1s dataset,
we improve the performance of [12] from 51.29% to 54.57%.
These compared works use hand-crafted features and shallow
fusion methods to integrate audio-visual modalities. This thus
shows the advantages of our learned features and fusion
strategy.

In addition, our method also improves our previous
work [61] from 74.32% to 80.36% on the RML dataset. This
is achieved by two improvements. First, compared with the
CNN models in [61], 3D-CNN models in this work can extract
spatial-temporal cues from video. Second, as shown in our
experiments, the DBN fusion method shows better multimodal
feature fusion ability than the FC fusion method in [61].
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V. CONCLUSIONS AND FUTURE WORK

This paper presents a new method for audio-visual emotion
recognition with a hybrid deep learning framework integrating
CNN, 3D-CNN and DBN. The outputs of audio and visual
networks are connected with a deep DBN model to fuse
audio and visual cues. To learn a joint discriminant feature
representation, this network is trained in two stages: 1) the
audio and visual networks are initialized with the pre-trained
AlexNet and C3D-Sports-1M for fine-tuning, and 2) the DBN
fusion network is trained on the target emotion classification
datasets. Experimental results on the RML, eNTERFACEOQS,
and BAUM-1s datasets show that our hybrid deep learning
model jointly learns a discriminative audio-visual feature rep-
resentation, which performs better than previous hand-crafted
features and fusion methods on emotion recognition tasks.
Its success guarantees further research in this direction.

Our work transforms 1-D audio signals into three channels
of Mel-spectrogram with size 64 x 64 x 3 as the suitable
input of CNN. This extracted Mel-spectrogram is regarded
as a RGB image feature representation. Consequently, we
can conveniently resize it into the suitable size as the input
of the existing CNN models pre-trained on image datasets.
In this case, it is possible to fine-tune the pre-trained CNN
models on target emotion datasets for audio feature extraction.
Experimental results demonstrate the validity of our cross-
media fine-tuning scheme.

This work employs 3D-CNNs to extract emotional features
from video segments. Another commonly used solution for
video feature extraction is combining CNN and LSTM [64].
A LSTM could also be a better solution for audio-visual fea-
ture fusion on video segments than average pooling. Therefore,
we will investigate the performance of CNN+LSTM for facial
expression recognition in our future work.

Besides, this work employs a two-stage learning strategy
to train the audio-visual networks and fusion network,
respectively. An end-to-end learning strategy would be more
concise and has potential to further boost performance.
Additionally, an end-to-end recognition system could be con-
structed by referring to recent LSTM based visual recognition
works [64]. Therefore, end-to-end learning and recognition
strategies would also be investigated in our future work.

It should also be noted that, deep models commonly contain
a large number of network parameters, resulting in expensive
computational cost. It is thus meaningful to investigate how
to reduce the network parameters of deep models, e.g., deep
compression [65], to achieve real-time emotion recognition
with a deep model.

This work employs face detector developed by
Viola and Jones [57] for face detection in videos. It may fail
in some challenging datasets like AFEW [66], where face
images suffer from substantial viewpoint and illumination
changes. More robust face detectors and models will be
studied in our future work. Moreover, this work aims to
employ deep models to identify discrete emotions, such
as anger, disgust, fear, joy, sadness, and surprise. It is
interesting to investigate the performance of our proposed
method on dimensional emotion recognition tasks, such as the
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recognition of depression degree on the AVDLC dataset [67].
Text is another important modality characterizing human
emotion. Therefore, it is also an important direction to employ
deep models to learn audio, visual, and textural features for
multimodal emotion recognition [68].
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