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ABSTRACT
The weakly supervised object localization (WSOL) is to lo-
cate the objects in an image while only image-level labels
are available during the training procedure. In this work,
the Selective Feature Category Mapping (SFCM) method is
proposed, which introduces the Feature Category Mapping
(FCM) and the widely-used selective search method to solve
the WSOL task. Our FCM replaces layers after the specific
layer in the state-of-the-art CNNs with a set of kernels and
learns the weighted pooling for previous feature maps. It is
trained with only image-level labels and then map the fea-
ture maps to their corresponding categories in the test phase.
Together with selective search method, the location of each
object is finally obtained. Extensive experimental evalua-
tion on ILSVRC2012 and PASCAL VOC2007 benchmarks
shows that SFCM is simple but very effective, and it is able
to achieve outstanding classification performance and outper-
form the state-of-the-art methods in the WSOL task.

Index Terms— Weakly Supervised Object Localiza-
tion (WSOL), Selective Feature Category Mapping (SFCM),
Global Learnable Pooling (GLP)

1. INTRODUCTION

Due to the development of supervised object detection meth-
ods, such as Faster RCNN [1], SSD [2] and YOLO [3], the
precision of many public detection datasets have been pushed
to a higher and higher record. However, these kinds of meth-
ods typically require a huge amount of manually annotated
bounding boxes for each object, which is very time consum-
ing and far more expensive than category labeling. In order
to avoid the tedious bounding box annotation process, some
previous works tried to localize the objects in a weakly super-
vised way [4, 5, 6, 7]. The weakly supervised object localiza-
tion(WSOL) aims to localize the specific object in an image
without any location annotation in the training procedure.

According to [8], both semantic and structure informa-
tion can be retained in the feature maps of the last convolu-
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Fig. 1. Visualization of the output of feature category map-
ping(FCM), which applies the learnable pooling kernel to
learn weighted sum in the training procedure and map the
feature maps to their corresponding categories in the test pro-
cedure and locate the object accurately.

tion layer but will be lost after going through fully-connected
layers. To keep more localization information for each fea-
ture point, [9] proposed to apply the Global Average Pool-
ing(GAP) [10] before classification. However, global average
pooling treats all positions equally and the pooled value might
not be able to well represent the whole feature map composed
of hundreds of pixels. Motivated by this, we think of learning
pooling weights so that the network can decide what to take
care of and connect the discriminative area of feature maps to
its corresponding category through the learned kernel.

In this paper, we propose the Selective Feature Category
Mapping (SFCM) method to conduct the weakly supervised
object localization. Instead of simply using the class activa-
tion mapping(CAM) [9], we build a bridge between the con-
volution feature map and the image level label through the
learned pooling kernel and call it Feature Category Mapping
(FCM). We replaced the last pooling and fully-connected lay-
ers with our FCM layer and train the network on classifica-
tion datasets. As shown in Figure 1, we illustrated the heat
maps obtained by FCM which are able to clearly highlight the
corresponding object. Selective search (SS) [11] is a widely-
used proposal generation method. Instead of using the SS as
a proposal generator at the training phase as in many previ-
ous supervised works [12], the SS is employed to help FCM
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find a more precise localization box at the test phase. The fi-
nal localization bounding boxes will be generated by fusing
heat maps with the outputs of the SS. Despite the proposed
method is apparently simple, we are able to achieve 10.65%
top-5 error rate on ILSVRC2012 validation dataset for clas-
sification task, which is rather close to the 8.6% top-5 error
rate achieved by VGG16 [13] . For WSOL task, our method
has achieved 30.0% mean average precision(mAP) and 61.6%
correct location rate(CorLoc) [14] and outperforms the state-
of-the-art methods.

To summarize, the main contributions of our work are:

• A new Global Learnable Pooling (GLP) method is in-
troduced in this work, which makes the pooling opera-
tion learnable and obtains a better representative value
for each feature map.

• We propose the Selective Feature Category Mapping
(SFCM) method for the weakly supervised object lo-
calization (WSOL) task. By mapping the feature maps
pixel-wisely to their specific category and fusing with
the selective search to get the final localization boxes,
our method can achieve great performance on the PAS-
CAL VOC2007 dataset in both mAP and CorLoc.

2. RELATED WORK

The WSOL aims to get the location and category of the ob-
ject while the bounding box annotation is not available in the
training procedure. Considering the existing evidence indi-
cating that CNNs trained for image classification shows re-
markable ability in object discover [8], Bilen et al. proposed
WSDDN [15] by adding a detection stream in the pre-trained
CNNs. Some recent works are also focusing on the object
proposal stage. In [16], Zhu et al. designed a soft pro-
posal(SP) component which can be easily plugged into any
CNN architectures. Despite the remarkable representation
ability of CNN features, several other works are trying to find
out some more advanced cues or strategies, which are hard for
CNN to learn, for the WSOL task, such as object size [6], ob-
jectness [4, 5, 17]. The Multiple Instance Learning(MIL) [18]
is an important traditional method, which regards the images
as a bag of instances. Based on the MIL, Shi et al. tried to
solve the WSOL task by using a kind of transfer leaning [19],
which transferred the knowledge learned from a source set to
an unknown target set.

Due to the lack of accurate location information, the coor-
dinates regression cannot be done during the training phase,
which always leads to incomplete bounding boxes [15] or can
only get a location point [20]. In order to avoid the seman-
tic and structure information destroyed in the fully-connected
layer and extract the discriminative feature area in the feature
maps, [9] and [20] respectively use the global average pool-
ing(GAP) and global max pooling(GMP) without any opti-
mization in the pooling stage. After that, a heuristic search

Fig. 2. The pooling kernel K will keep optimizing during the
training phase to obtain an appropriate representation of the
feature map F .

strategy is proposed by Bency et al. [21] to hypothesize
location of feature maps in a multi-scale manner and grade
the corresponding receptive fields by the classification layer.
Besides the GAP and GMP, the pooling operation is also
considered as a part that can be optimized in WSOL. Du-
rand et al. proposed the WILDCAT framework [22] aiming to
align image regions for gaining spatial invariance and learn-
ing strongly localized features. Inspired by Zhou’s work [9],
a global learnable pooling(GLP) is proposed in this paper,
which makes the pooling stage learnable and results in a bet-
ter representation of the feature map through the pooled value.
For the WSOL task, the learned pooling kernel is acted as
the bridge which connected feature maps and the specific cat-
egory, highlighting the discriminative corresponding area in
the convolution feature maps.

3. SFCM

In this section, we will introduce the proposed SFCM method
for the WSOL task. In section 3.1, we first present the
detail and training strategy of the Global Learnable Pool-
ing(GLP). In section 3.2, we introduce the Feature Category
Mapping(FCM) by applying the GLP, and we finally describe
the steps to generate the localization bounding box.

3.1. Global Learnable Pooling

Some previous works have indicated that by removing the
fully-connected layer except for the last one [23, 24] or re-
placing it with the GMP [20] or the GAP [10] layer will not
result in an obvious drop in the performance. However, map-
ping a feature map composed of hundreds of pixels to a spe-
cific value via simply computing its max or mean might not
obtain the best representation. In this paper, we introduced
a new pooling method which makes the pooling operation
learnable so that the network can decide what to take care of
and tend to obtain an appropriate representation of the feature
map through the training data.

Take the VGG16 as an example, we removed the follow-
ing fully-connected layer fc6 and fc7 after the conv5 3 layer.
Instead, we added a convolution layer FCM conv with 1024
kernels where the kernel size is 3 × 3. After that, we can
get 1024 feature maps of size 14×14. Instead of mapping the



196(14×14) feature pixels to a single value by applying GAP
or GMP, the Global Learnable Pooling(GLP) is introduced at
this stage. For a given image I , let the F i represents the ith
feature map of the FCM conv layer. Ki refers to the learned
pooling kernel which belongs to F i. The pooled value P i can
be obtained as follows and the · here means the dot product
among the feature map and the pooling kernel:

P i =
∑
m,n

relu(F i ·Ki) (1)

where m,n is the index of the two dimensions of F i and
Ki and the relu() is applied for nonlinear transform which
can also inhibit the inactive area. We illustrate our pooling
method in Figure 2.The optimization of our pooling kernel is
similar with the convolution layer. In the back propagation
stage, consider the specific value km,n and fm,n in the pool-
ing kernel Ki and feature map F i, and J is the Softmax loss
value. The optimization can be formulated as:

zm,n =
∑

m,n fm,nkm,n + b (2)

k
′

m,n =

{
km,n − α ∂J

∂zm,n

∂zm,n

∂km,n
, zm,n > 0

km,n, zm,n ≤ 0
(3)

where α refers to the learning rate and the b means the bias.
Due to each feature map F i owns a specific pooling kernel
Ki and there is no sharing mechanism in our method, the
kernels are able to focus on their corresponding feature map.
Our GLP method are tending to learn a better representation
of the given feature map which can retain both the semantic
and spatial characteristic. Furthermore, our method build a
bridge between the feature maps and the categories, which is
the most important component in our Feature Category Map-
ping(FCM) method.

3.2. Selective Feature Category Mapping

As described in section 3.1, for each convolution feature map
with size 14×14, the Global Learnable Pooling(GLP) outputs
a specific value which has a good representation of the seman-
tic and spatial information. As in section 3.1, the VGG16
is considered as our base network and the fully-connected
layer fc6 and fc7 are replaced with the FCM conv and GLP
layer.After the learnable pooling operation, we obtained 1024
pooled units and then a simple fully-connected layer is ap-
plied as the classifier.

We defined the W j
i refers to the weight between the

pooled value P i and the specific category j, which also im-
plies the contribution of feature map to the category. Consid-
ering the learnable pooling kernel K, for a specific category
j, a bridge has been built among the weights array and the
feature map F by applying the learned kernel.We define the
Mj as the feature category mapping for class j, by using the
pooling kernel K learned from the GLP layer. The N refers

Fig. 3. The comparison between the feature maps by using
different methods and the original convolution feature maps.
Column (b) are the original feature maps obtained after the
conv5 3 layer in VGG16. Column (c) are generated by using
CAM and the last column are the feature maps after applying
our FCM method.

to the number of the convolution feature maps. The heat map
Mj can be calculated as follows:

Mj =
N−1∑
i=0

relu(F i ·Ki)W i
j (4)

After obtaining the heat maps by using the FCM, an easy
up-sampling is done for reverting it to its original size. We
transfer the heat map to the binary form Cj by setting the
threshold. And then, the localization box are generated ac-
cording to the binary map. The index() here are used for
obtaining the coordinate of each pixel in the binary map. Spe-
cific steps are formulated as follows:

Cj =

{
1, Cj

m,n ≥ thresh
0, Cj

m,n < thresh
(5)

(x, y) = index(Cj
m,n) s.t.Cj = 1 (6)

box = {min(x),min(y),max(x),max(y))} (7)

Different from simply weighted linear sum in CAM [9],
our GLP method learning pooling weights so that the network
can decide what to take care of. As shown in Figure 3, it is
obviously that some semantic information is retained on the
original feature map, but it is not prominent enough for object
localization. Comparing the columns (c) and (d), we find that
FCM method proposed in this paper is very good at locating
the object accurately and completely.

On the other branch, by applying Selective Search(SS)
method, we got nearly 2,000 proposals for each image. For
each proposal, the classification score is computed by for-
warding the pre-trained CNNs and the ROI-Pooling [12] has



Fig. 4. The overview of our Selective Feature Category Mapping(SFCM) method. The standard VGG16 architecture was
modified with our GLP layer and finally generating the localization boxes by merging our FCM method with the SS.

been applied for avoiding the time-consuming. After that, the
proposals with score higher than 0.75 will be reserved. Fi-
nally, the Non-Maximum Suppression(NMS) is applied for
obtaining the best localization bounding box from primary
boxes generated from the FCM and Selective search propos-
als. We obtain the final localization boxes by merging the
FCM and SS without any bounding box annotation during the
training procedure. The overview of our Selective Feature
Category Mapping(SFCM) method demonstrated in Figure 4.

4. EXPERIMENTS

In this section, we evaluate our method on the ILSVRC2012
and PASCAL VOC2007 datasets, as they are the most widely-
used benchmark in image classification and weakly super-
vised object localization. For classification, we report the er-
ror rate in our method with other state-of-the-art CNNs archi-
tectures and the CAM modified version mentioned in [9]. For
WSOL task, we use the training splits of the VOC2007 and
evaluate the classification and localization performance on its
validation splits. We use two performance measures. First,
we assess CorLoc [14], a common-used weakly supervised
object localization measure. Then, we report the localization
mean average precision(mAP) on VOC2007 validation splits.

4.1. Classification on ILSVRC2012

Note that it is important for the network to perform well in
classification tasks which will directly affect the localization
performance in the next stage. In order to verify the perfor-
mance of our method on classification task, we mainly eval-
uate the effect of modifying the state-of-the-art CNNs archi-
tecture such as AlexNet [25], VGGNet [13], GoogleNet [26],
by applying the Global Learnable Pooling(GLP). Specifically,
for each network mentioned above, the fully-connected layer

or the GAP layers are removed except the final classification
layer and we added a convolution layer FCM conv of size
3 × 3 and applied the GLP layer after it. What is worth to
mention that by removing the fully-connected layer, nearly
90% parameters have been decreased in VGG16.

For details, we remove the pool5, fc6 and fc7 layer and
replaced it with the FCM conv in AlexNet, and the GLP
layer maps the 13 × 13 feature map to a specific value, the
last fully-connected layer is retained as a classifier. The mod-
ification method of the VGG16 is generally the same as the
AlexNet. For GoogleNet, the layers after the Inception5b
are replaced with the FCM conv and GLP layer. Respec-
tively, each network is trained on the ILSVRC2012 datasets
from the scratch for 300,000 iterations.

For all evaluation, we report the top-5 error rate on
ILSVRC2012 validation datasets. Table 1 summarizes the
classification performance by using the origin AlexNet,
VGG16, GoogleNet and its modified version by using our
method. According to the Table 1, we find that by using the
VGG16 or the AlexNet as our base network may cause 1-2%
drop on top-5 error rate by modifying the networks in our
method. For GoogleNet, there is almost no drop when com-
paring with the original architecture (0.7% drop). In addition,
we find that our method does a better job than using the CAM
modified CNNs with GAP in [9]. Overall, we can come to
a conclusion that removing the fully-connected layer and ap-
plying the FCM conv and GLP layer instead, will result in a
comparable classification performance.

4.2. Weakly Supervised Object Localization

We evaluate the object localization performance of the SFCM
on PASCAL VOC2007 validation splits, the CorLoc and mAP
are reported as our measurement.



Table 1. Classification performances (error rate) on
ILSVRC2012 validation sets.

Method Top-5 val. error
VGG16 [13] 8.6
AlexNet [25] 16.4

GoogleNet [26] 8.4
VGG16+GLP+scratch 10.65
AlexNet+GLP+scratch 18.1

GoogleNet+GLP+scratch 9.1
VGG16+CAM finetune [9] 12.7

Fig. 5. Bounding boxes and localization results on VOC2007
validation set. The ground-truth boxes are in red and the pre-
dicted boxes by applying the SFCM are in green.

4.2.1. Classification task

As described in section 4.1, the good classification perfor-
mance is important for robust object localization. We first
evaluate the classification performance of our model on the
VOC2007 validation splits. For the 20 classes (except Back-
ground), we summarized the classification results in Table 2.
By modifying the VGG16 and GoogleNet in our way, we
find that our model is able to outperform its original archi-
tecture and get 0.8% increase when using VGG16, and the
GoogleNet GLP performs comparable to GoogleNet.

4.2.2. Object Localization

SFCM localization performance is reported in Table 3 and our
method significantly outperforms existing WSOL methods on
CorLoc. As shown in Fig. 5, we demonstrate the predicted
localization boxes by applying SFCM and the boxes visual-
ization (c) and (f) are cropped for a better visual impression.

Comparison to the state-of-the-art. As shown in Ta-
ble 3, we compare the results of our method to the state-of-
the-art WSOL methods and our method is comparable to them
in both CorLoc and mAP. From the Table 3, the CorLoc of our
method outperforms the state-of-the-art works [4, 7, 15, 16],
and the mAP is worse than the WSDDN [15] and Shi et
al. [19]. However, WSDDN is designed to focus on obtain-
ing precise bounding box while our method is trying to locate
the specific objects, and the result also proves our motiva-

Table 2. Classification performance (Accuracy) on PASCAL
VOC2007 validation splits.

Method Accuracy
VGG16 [13] 89.3

GoogleNet [26] 89.8
VGG16+GLP finetune 90.1

GoogleNet+GLP finetune 88.9
VGG16+CAM finetune [9] 87.6

Table 3. CorLoc and mAP on PASCAL VOC2007 validation
splits.

Method CorLoc mAP
WSDDN [15] 54.2 34.5

Cinbis [4] 52.0 28.6
SP-VGG [16] 60.6 -

WSOL Convex [7] 43.7 27.7
Shi et al. [19] 59.9 33.8

Ours 61.6 30.0

tion. SFCM can also be improved by using WSDDN’s idea
of considering the contribution of the discriminative area and
optimizing in the training procedure. As for the [19], they
transfer the model trained on another set to the WSOL task,
which results in a better performance in mAP but is not very
fair to SFCM. Comparing with the complex multi-instance
model proposed by Cinbis [4] , our method outperforms by a
large margin while being much simpler.

The analysis of the FCM. From highlighting heat maps
shown in the Figure 5, the feature maps obtained through
FCM shows the remarkable ability of reserving the seman-
tic and spatial information and we can clearly draw the posi-
tion of the specific objects. In order to prove the effectiveness
of the Feature Category Mapping(FCM) in SFCM, we verify
the the FCM and selective search performance respectively
and results are reported in Table 4 detailly. By carefully ob-
serving the NMS procedure, we find that the SS is just acted
as an assistant and most of the generated candidates has been
dropped. From the ablation study, we can draw the conclu-
sion that by using the SFCM combined with the FCM and
the SS, the localization performance gained a significant im-
provement when compared tp using FCM and SS separately.

5. CONCLUSION

In this work, we develop a general Selective Feature Category
Mapping (SFCM) method for the weakly supervised object
localization (WSOL). By applying the CNNs modified with
the GLP layer trained on the classification task, we build a
bridge between convolution feature maps and final category
units, which will highlight the discriminative area in feature
maps. The final localization boxes are generated by merg-



Table 4. Comparison of using SFCM and separately using
selective search and FCM

Method mAP CorLoc
Selective Search 17.8 38.8

FCM 20.7 49.5
Ours 30.0 61.6

ing the highlighted areas with the candidates generated from
the selective search method. We report the classification and
the WSOL performance of our method on the ILSCRC2012
benchmark and the PASCAL VOC2007 dataset, demonstrat-
ing that our method is able to achieve good classification per-
formance and outperforms the state-of-the-art methods on the
WSOL task. Since our technique provides the precise local-
ization information for objects in the image, the weakly super-
vised semantic segmentation and the precise compact bound-
ing boxes generation will be considered as our future work.
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