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a b s t r a c t

In this paper, the divide-and-conquer based hierarchical video compressive sensing (CS) coding frame-
work is proposed, in which the whole video is independently divided into non-overlapped blocks of the
hierarchical frames. The proposed framework outperforms the traditional framework through the better
exploitation of frames correlation with reference frames, the unequal sample subrates setting among
frames in different layers and the reduction of the error propagation. At the encoder, compared with the
video/frame based CS, the proposed hierarchical block based CS matrix can be easily implemented and
stored in hardware. Each measurement of the block in a different hierarchical frame is obtained with the
different sample subrate. At the decoder, by considering the spatial and temporal correlations of the
video sequence, a spatial–temporal sparse representation based recovery is proposed, in which the
similar blocks in the current frame and these recovered reference frames are organized as a spatial–
temporal group unit to be represented sparsely. Finally, the recovery problem of video compressive
sensing coding can be solved by adopting the split Bregman iteration. Experimental results show that the
proposed method achieves better performance against many state-of-the-art still-image CS and video CS
recovery algorithms.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, Compressive Sensing (CS) has been extensively
studied, whose purpose is to reconstruct the signal from its
observed measurements

yv ¼Φvv; ð1Þ

where vARkN is lexicographically stacked representations of the
original video sequence (k is the frame number of the video and N
is the pixel number of each frame) and yvARkM is the CS mea-
surements observed by a random kM � kN measurement matrix
Φv, ðM⪡NÞ. The sample subrate r¼M=N. It is noticed that, the size
of the video measurement matrix is too big to be implemented
and stored in hardware. In order to relieve the problem, by the
idea of divide-and-conquer, the video is divided into many frames
and the measurement of each frame fi is linearly projected by a
frame based measurement matrix Φf

yf i ¼Φf f i; ð2Þ
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where f iARN is lexicographically stacked representations of the ith
frame and yf i ARM is the CS measurements observed by a random
M � N measurement matrix Φf. However, with the standard-
definition video or high-definition (HD) video, the implementa-
tion and storage problems still exist. The size of a random mea-
surement matrix for a block is much smaller than that for the
whole frame, and the problem of large storage cost of the whole
image measurement matrix is avoided by employing the block-
based randommeasurement matrix instead. For this season, block-
based CS [1] is proposed, in which each frame is divided into many
non-overlapped blocks, each block is linearly projected by the
same random measurement matrix.

ybi ¼Φbbi: ð3Þ

The block-based measurement matrix design can be seen as a
special case of Eq. (1), if the whole matrix can be written as a block
diagonal with the block matrix along the diagonal [2].

By the hardware implementation, the process in video CS has
been made with a single-pixel camera [3], based on representing a
video in the Fourier domain or the Wavelet domain. And then, more
complicated cameras [4,5] are proposed by considering the corre-
lation in the spatial or temporal domain. It can be seen that the
coherence between the Gaussian random matrix and the recovery
dictionary is low making the recovery of video compressive sensing
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effective. So the Gaussian random matrix is widely used on the
hardware to generate linear measurements in compressive sensing
of the signal.

Although video CS measurement process can be regarded as a
combination of acquisition and compression, this process is not a
real video compression in the strict information theoretic sense,
because it cannot directly produce a bitstream from the sensing
device hardware, which can be only seen as a technology of
dimensionality reduction in essence [2]. As a very important
technology of image/video coding, quantization is introduced into
the CS image/video coding model [6], which is applied for the CS
measurements of each frame. However, due to the random char-
acteristic of generated frame measurements by the random matrix
Φ, isometric scalar quantization does not perform well in rate-
distortion performance. Inspired by the success of the block-based
hybrid video coding, such as HEVC [7] and H.264, the inter-
prediction coding technology can be used in the CS measure-
ment process of each video frame. Some works [2,8,9] on the
block-based CS (BCS) hybrid coding framework are presented. Mun
and Fowler proposed the block-based quantized compressed
sensing with differential pulse-code modulation (DPCM) [2] and
uniform scalar quantization. In [2], the previous decoded mea-
surement is taken as the candidate of the current measurement.
Zhang et al. extended the DPCM based CS measurement coding
and proposed the spatially directional predictive coding (SDPC)
[8], in which the intrinsic spatial correlation between neighboring
measurements of natural images is further explored. In the BCS [1]
measurement coding, Khanh et al. [9] point out that, the spatial
correlation among neighboring blocks becomes higher as block
size decreases and the CS recovery of a small block is less efficient
than that of a large block. In order to balance the conflict between
compressed ratio and reconstructed quality, a structural mea-
surement matrix (SMM) is proposed [9] to achieve a better RD
performance, in which the image is sampled by some small blocks,
and reconstructed with large blocks spliced by the small block.

Since each CS measurement of the frame can be coded, the
traditional framework of the whole video CS coding in imple-
mentation is that, each frame of the video sequence is recovered
independently with the same sample subrate. Mun and Fowler
[10] proposed a video CS framework with key frames and non-key
frames, which utilized the temporal redundancy in video sequence
to improve the recovery quality of the non-key frames. Two
sample subrates are used in sampling stage, where the high
sample subrate is adopted for the key frames and the low sample
subrate for the non-key frames. By considering the factors of the
hardware implementation, the spatial–temporal correlation and
the reconstructed quality, the hierarchical video compressive
sensing (CS) coding framework is proposed in this paper, in which
the whole video is independently divided into non-overlapped
blocks of the hierarchical frames. The proposed framework out-
performs the traditional framework through the better exploita-
tion of frames correlation with reference frames, the unequal
sample subrates setting among frames in different layers and the
reduction of the error propagation. At the encoder, compared with
the video/frame based CS, the proposed hierarchical block based
CS matrix can be easily implemented and stored in hardware. Each
measurement of the block in different hierarchical frame is
obtained with the different sample subrate. Finally, these mea-
surements are coded into bitsteams by the prediction, the quan-
tization and the entropy coding.

At the decoder, the measurements of the frames are decoded
by the inverse process of the prediction, the quantization and the
entropy coding. From many fewer acquired measurements than
suggested by the Nyquist sampling theory, the CS theory demon-
strates that a signal x can be reconstructed with high probability
when it exhibits sparsity in some domain Ψ, which has greatly
changed the way engineers think of data acquisition,

x¼Ψθ: ð4Þ
If θ is a sparse coefficient vector, the signal x is sparse under the
domain Ψ. The performance will be poor, using the still-image CS
recovery algorithms to the video CS measurement. By considering
the spatial and temporal correlations of the video, it is possible to
achieve a high-quality recovered video even employing a low
sample subrate. A motion compensation based residual recovery
was proposed [10], which utilized the temporal redundancy in
video sequence. Two subtrates are used in a sampling stage, where
high subrate is adopted for key frames and low subrate for non-
key frames. Then, not only the temporal redundancy, but also the
multi-images redundancy and the multiview redundancy are
taken into account in [11]. Mun et al. [12] cast the CS recon-
struction in the base of contourlet transform or complex-valued
dual-tree wavelet transform, resulting in better performance
compared to the conventional fixed domain based recovery met-
hods. However, it is almost impossible to find a universal domain
in which all kinds of signals are sparse. As an alternative to the CS
reconstruction scheme, the iterative algorithms based on non-
local patches have been proposed recently (e.g. [13,14]). In [13],
the number of nonzeros 3-D transformation coefficients of a
group, which is stacked by the non-local patches, was used to
measure the non-local sparsity. Additionally, the collaborative
sparsity measure was established in [13], enforcing local smooth-
ness and non-local sparsity simultaneously. A group sparse repre-
sentation (GSR) modeling was further developed in [14], using the
non-local grouping technique as well. In essence, this modeling
efficiently utilized the intrinsic self-similarity in the spatial
domain of natural images, which also exhibits the patch similarity
among patch group. Also, GSR modeling improves the perfor-
mance of recovery over conventional fixed domain based recovery
methods.

Inspired by the idea of GSR, at the decoder of the proposed
framework, by considering the spatial and temporal correlations of
the video sequence, a spatial–temporal sparse representation
based recovery is proposed to improve the recovered quality, in
which the similar blocks in both the current frame and these
recovered reference frames are grouped as a spatial–temporal
group unit to be sparse represented. These reference frames are
selected by the optimal decision of the hierarchical based frame-
work. At the decoder, by considering the spatial and temporal
correlations of the video sequence, a spatial–temporal sparse
representation based recovery is proposed, in which the similar
blocks in the current frame and these recovered reference frames
are organized as a spatial–temporal group unit to be represented
sparsely. Experimental results show that the proposed method
achieves better performance against many state-of-the-art still-
image CS and video CS recovery algorithms.
2. Proposed hierarchical frame based video CS coding
framework

2.1. The key frame based video CS framework

The straightforward consideration of the video CS measure-
ment sampling is to design a video-based measurement matrix.
However, the size of the video measurement matrix is too big to be
implemented and stored in hardware. With the standard-defi-
nition video or the high-definition (HD) video, the implementation
and storage problems of frame-based measurement matrix still
exist. Then, the block-based CS sampling [1] is proposed, in which
each frame of the video is divided into the non-overlapped blocks,
and each block is independently and linearly projected by the
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same block-based measurement matrix. Because the size of a
block-based measurement matrix for a block is much smaller than
the frame-based and video-based matrices, the problem of large
storage cost of the whole image measurement matrix is avoided by
employing the block-based random measurement matrix. Like the
technology of distributed video coding (DVC), the block-based
video CS framework has a more lightweight encoder and pushes
the computational complexity to the decoder, which is suitable for
the video sensing applications with the constrain of low-comp-
lexity and low-power. The traditional framework in implementa-
tion is that, each frame of the video sequence is recovered inde-
pendently with the same sample subrate. Mun and Fowler [10]
proposed a video CS framework with key frames and non-key
frames, which utilized the temporal redundancy in video sequence
to improve the recovery quality of the non-key frames. Two
sample subrates are used in sampling stage, where the high
sample subrate is adopted for the key frames and the low sample
subrate for the non-key frames.

2.2. The proposed hierarchical frame based video CS framework

In this paper, we propose a divide-and-conquer based hier-
archical video compressive sensing (CS) coding framework, which
can be shown in Fig. 1. In the proposed framework, frames are
divided into many groups of pictures (GOP), in which the 2k�1

frames are defined by k layers l1; l2;…; lk with different sample
subrates for different layers. At the sampling stage, the video is
defined as v¼ ff 1; f 2;…; f ng, the constrain of the sample subrates r
is

rli 4rlj ; s:t: io j; ð5Þ

rli represents the sample subrate of the qth frame fq on the ith
layer ðqA liÞ. The block-based measurement matrix should also be
adjusted by which layer the current frame belongs to.

Compared with the temporal-independent framework and the
key-frame based framework, our proposed hierarchical frame
based video compressive sensing (CS) coding framework has some
advantages.
Fig. 1. Hierarchical structure based video CS frame
First, better temporal correlation with reference frames is
exploited in the proposed framework, in which the nearest for-
ward and backward recovered frames in the higher layer are
considered as the reference frames to improve the recovery quality
of the current frame. However, only the forward reference frames
are taken part in the temporal-independent framework and the
key-frame based framework. In the proposed framework, the
unequal sample subrates are used in the hierarchical frames in
different layers. It can be noticed in Fig. 2 that, performance of the
frame recovery with one nearby reference frame is better than
that without reference by the same sample subrate. In addition,
the nearby reference with better quality with higher sample
subrate can help to recover a better current frame. Through the
observation, We select the forward and backward recovered
frames with higher sample subrates as reference frames at the
recovery stage of the current frame. But in the temporal-indep-
endent framework, the sample subrate of the reference frame is
equal to that of the current frame.

Second, the selection strategy of the recovered reference
frames is proposed in this framework. Another observation points
out that, the temporal distance between the current frame and the
reference frame also influences the recovery performance (shown
in Fig. 3). With the same sample subrate, the larger temporal
distance will produce the worse performance of the current frame.
When the distance is big enough ðd47Þ, the temporal correl-
ation becomes weak and the performance is worse than that of
temporal-independent framework. So, in our proposed framework
the nearest recovered frames in the higher layer are selected as the
reference of the current frame. Moreover, better temporal corre-
lation with reference frames is exploited in the proposed frame-
work, in which the forward and backward recovered frames in the
higher layer are both considered as the reference frames to
improve the recovery quality of the current frame. However, only
the forward reference frames take part in the temporal-indep-
endent framework and the key-frame based framework.

Third, our proposed hierarchical structure will efficiently emp-
loy the correlation among frames and reduce the recovery error
propagation. Suppose the GOP size is 2k�1. Using the temporal-
work with the GOP ¼ 2k�1 (k¼4 for example).



Fig. 2. The PSNR of recovered the 2nd frame (foreman) by using the 1st frame as a reference with different sample subrate (0.1–0.7). The subrate of current recovered frame
is 0.3, 0.4 and 0.5 respectively.

Fig. 3. The PSNR of recovered the 8th frame (foreman) by using the original reference frame with different temporal distance (1st–7th). The subrate of current recovered
frame is 0.3, 0.4 and 0.5 respectively.
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independent framework and the key-frame based framework, the
error will both propagate with 2k�1�1 times. In our proposed
framework, it will be reduced to k�1 times with k hierarchical
layers.

In conclusion, the proposed hierarchical frame based video
compressive sensing (CS) coding framework is more effective than
the temporal-independent framework and the key-frame based
framework. Next section, the details of the proposed method will
be introduced.
3. Spatial–temporal video recovery with hierarchical frame
structure

3.1. The DPCM based CS measurement coding

Although the video CS measurement process can be regarded
as a combination of the acquisition and the compression, this
process is not a real video compression in the strict information
theoretic sense, because it cannot directly produce a bitstream
from the sensing device hardware, and it can be only seen as a
technology of dimensionality reduction in essence. In the pro-
posed hierarchical frame based video CS coding framework, the
hierarchical frames of the video are divided into non-overlapped
blocks and these blocks are linear projected by the Gaussian ran-
dom matrix (GRM) with the corresponding sample subrates. At the
CS measurement yv encoder, each current measurement of a block
is coded by the prediction measurement. In DPCM based CS
measurement coding [2], the prediction measurement is the
decoded measurement of the previous block; In SDPC [8], the
optimal prediction measurement is selected from a set of candi-
dates that are generated by four designed directional predictive
modes. Then, the prediction residuals are uniform scalar quantized
and entropy encoded into bitstreams. The decoder process is the
inverse of encoder, in which by using the DPCM-based CS coding
(shown in Fig. 4) the reconstructed video CS measurement ~yv.

3.2. The spatial–temporal sparse representation modeling

At the decoder, by the de-quantization on quantizer indexes
from the bitstream the quantized residuals ~rb can be obtained,
which is then added by the prediction ŷb, producing the recon-
structed CS measurements group ~yb ¼ ~rbþ ŷb, ready for further
prediction coding. At last, all the reconstructed measureme-
nts ~yb are obtained to compose the frame measurement ~yf ¼ f
~yb1 ; ~yb2 ;…; ~ybm g sequentially, which are then utilized for the cur-
rent frame reconstruction by CS recovery algorithms. Compressive
sensing theory allows that a current frame fi can be exactly
recovered from its space measurements yf i acquired by linear
projection with the sampling subrate ri if fi has advantage of being
sparse in a domain, e.g. FFT domain [15], DCT domain, DWT
domain, or some incoherent domains. Different from other signals,
natural image as a two-dimensional signal has its own prior



Fig. 4. The diagrammatic of the block-based DPCM video CS coding.

Fig. 5. The diagrammatic of the Gi;j composition.
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knowledge, such as local smoothing model and group sparse
model. To cope with the ill-posed problem of single-frame CS
recovery, these traditional methods employ various image prior
knowledge for regularizing the solution to the following mini-
mization problem:

arg minf
1
2
∥yf �Φf∥2

2þλΓðf Þ; ð6Þ

where yf is the observed frame measurement value at the encoder,
1
2Jyf �Φf J22 is the l2-norm data-fidelity term, Γðf Þ is called the
regularization term denoting image prior and λ is the regulariza-
tion parameter. Due to that image prior knowledge plays an
important role in the performance of the uncompressed single-
frame CS restoration algorithms, designing effective regularization
terms Γðf Þ to reflect the image priors is at the core of image
restoration. Some image prior models are usually used as the
regularization term, such as the local smoothing based total var-
iation (TV) model [16,17], low-rank matrix model [18], nonlocal
self-similarity [19] based model and these dictionary based mod-
els: DCT model, DWT model, KSVD [20] model and GSR [21]
model. However, different from the single-frame, the video sequ-
ence not only has the characteristics in the spatial domain but also
has the correlation in the temporal domain, which can help to get
the better recovered performance of the frame with references in a
video than the single-frame without reference frames. The motion
compensation based recovery method for video CS measurement
was proposed [10], in which the current frame is estimated by the
reference of nearest recovered frame. This recovery performance is
determined by accuracy of the recovered reference frame and the
estimated errors are propagated with the decoding processing.
Recently, the group-based sparse representation [21] for image CS
recovery is an effective and widely used model, which outper-
forms the traditional patch-based sparse representation method
[20] by considering the correlations between patches in the sparse
representation and reducing the computational complexity in the
dictionary learning. However, only the self-similarity in spatial
domain is utilized. Unlike [10,20,21], in our proposed spatial–
temporal sparse representation based video CS recovery method,
all the similar blocks in the current frame, the forward reference
frame and backward reference frame are exploited. To rectify the
above problems of the sparse representation in video CS recovery,
we propose a spatial–temporal sparse representation modeling in
the unit of spatial–temporal group instead of patch, aiming to
exploit the nonlocal similarity in both the spatial domain and the
temporal domain of the video sequence simultaneously in a uni-
fied framework. In the proposed spatial–temporal group design,
the current frame fi is divided into some overlapped blocks bi;j of
size Lb � Lb, where j is the index of block in the ith frame. for each
block bi;j, its nb most similar blocks in the current frame fi, and the
corresponding forward and backward reference frames: f fori , f backi ,
which comprise the set Sbi;j .

Sbi;j ¼ bk j ∥bk�bi;j∥2
2oT

� �
: ð7Þ

Note that, the corresponding forward and backward reference
frames: f fori and f backi are the nearest frames of the current frame fi
with higher layers, each block in Sbi;j is represented as a vector,
while each spatial–temporal group Gi;j. The composition of Gi;j is
shown in Fig. 5. Each spatial–temporal group Gi;j is represented by
the form of matrix, which is composed of nonlocal blocks in the
spatial–temporal domain with similar contents. So in the proposed
method, the Γðf iÞ is defined by

Γðf iÞ ¼
X
j

∥αGi;j
∥0 s:t: Gi;j ¼Di;jαGi;j

; ð8Þ

where Di;j is the dictionary of the spatial–temporal group Gi;j and
αGi;j

is the sparse coefficients. The minimization problem of video
CS recovery for our proposed spatial–temporal group based sparse
representation can be formalized as

arg minf i

1
2
∥yf i �Φf i∥2

2þ
X
j

∥αGi;j
∥0 s:t: Gi;j ¼Di;jαGi;j

; ð9Þ
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where the Di;j is a self-adaptive dictionary for Gi;j, which is trained
directly from the estimate ~Gi;j of Gi;j. We exploited the singular
value decomposition (SVD) to ~Gi;j:

~Gi;j ¼Ui;jAi;jV
T
i;j; ð10Þ

where ui;j�k and vi;j�k are the kth columns of Ui;j and Vi;j respec-
tively. The dictionary Di;j can be represented by ui;j�k and vi;j�k,
that is Di;j ¼ fui;j�kvTi;j�kg

nk

k ¼ 1
. Therefore, the ultimate adaptively

dictionary for Gi;j is learned. Moreover, the self-adaptive dictionary
learning for each group with low complexity is more efficient and
effective than the dictionary learning from the off-line video
sequences.

3.3. The proposed algorithm

In the case of video CS restoration with compressed measure-
ments, the true measurements yv do not exist in the decoder, and
the instead l2 data-fidelity term 1

2J ~yf i �Φf i J22 cannot accurately
reflect the accuracy of the actual measurements value. Because the
decoded measurements value ~y reconstructed at the decoder by
the sum of the predicted measurements and the quantized resi-
dual is not equal to the observed measurement value y at the
encoder. To deal with this problem, the Γðf Þ regularization term is
set a bigger regularization parameter λ in the problem with
inaccurate l2-norm data-fidelity term 1

2J ~yf i �Φf i J22 than that with
the accurate l2-norm data-fidelity term 1

2Jyf i �Φf i J22.
Finally, we formulate our problem as the following minimiza-

tion problem:

arg minf i

1
2
∥ ~yf i

�Φf i∥2
2þλ

X
j

∥αGi;j
∥0; s:t: Gi;j ¼Di;jαGi;j

: ð11Þ

Then the general solution to this problem is given by adopting the
framework of split Bregman iteration [22] (SBI). This minimization
problem can be translated into an equivalent constrained optimi-
zation problem by introducing variables u and v:

arg minu;v ¼
1
2
∥ ~yf i �Φu∥2

2þλ
X
j

∥vj∥0; s:t: u¼ Di;jvj
� �nj

j ¼ 1: ð12Þ

Algorithm 1. Generalized solution for Eq. (12) by split Bregman
iteration.
Inp
Set
1:
2:
3:

4:

5:
ut:
μ, initialize u 0ð Þ, v 0ð Þ, D 0ð Þ and z 0ð Þ, t¼0;
while (stopping criterion is not satisfied totmax)
u tþ1ð Þ ¼ arg minu

1
2∥ ~yf i

�Φu∥2
2þμ

2∥u�D tð Þv tð Þ �z tð Þ∥2
2;

v tþ1ð Þ;D tþ1ð Þ ¼ arg minv;Dλ
P

j∥vj∥0þμ
2∥u tþ1ð Þ �Dv�z tð Þ∥2

2;

z tþ1ð Þ ¼ z tð Þ � u tþ1ð Þ �D tþ1ð Þv tþ1ð Þ
� �

;

t ¼ tþ1 ;
end while
6:

So in this case the SBI addresses the minimization problem
Eq. (12) into u sub-problem and v sub-problem as shown in
Algorithm 1. Given z tð Þ, v tð Þ and D tð Þ, the u tþ1ð Þ sub-problem is
essentially a minimization problem of strictly convex quadratic
function, that is

u tþ1ð Þ ¼ arg minu
1
2
∥ ~yf i �Φu∥2

2þμ
2
∥u�v tð Þ �z tð Þ∥2

2: ð13Þ

The steepest gradient descent method is utilized to solve Eq. (13):

~u tþ1ð Þ ¼ u tð Þ �γ
∂
1
2
∥ ~yf i �Φu∥2

2þμ
2
∥u tð Þ �v tð Þ �z tð Þ∥2

2

∂u tð Þ ; ð14Þ
where γ represents the optimal step. Therefore, solving u sub-
problem only requires computing the following equation itera-
tively:

~u tþ1ð Þ ¼ u tð Þ �γ ΦTΦu tð Þ �ΦT ~yf i þμ u tð Þ �v tð Þ �z tð Þ� �� �
: ð15Þ

And then, the solution of the v sub-problem is dependent on
the regularization term ΓðvÞ. If ΓðvÞ is l2-norm regularization term,
it has the close form solution by a least square method, else if ΓðvÞ
is l1-norm or l0-norm regularization term, the above minimization
problem is large-scale and highly non-convex. Some approxima-
tion approaches, such as TV [16], HQ [23], K-SVD [20] and GSR
[21], have been proposed to solve this l1-norm or l0-norm problem.
In this paper, Γðf iÞ is defined as Γðf iÞ ¼

P
j JαGi;j

J0 to present the
spatial–temporal group sparse representation. Given z tð Þ and u tþ1ð Þ,
the v tþ1ð Þ and D tþ1ð Þ sub-problem is

v tþ1ð Þ;D tþ1ð Þ ¼ arg minv;D λ
X
j

∥vj∥0þ
μ
2
∥u tþ1ð Þ �Dv�z tð Þ∥2

2: ð16Þ

For each group Gi;j in the ith frame,

v tþ1ð Þ
j ;D tþ1ð Þ

j ¼ arg minvj ;Dj

λ
μ
∥vj∥0þ

1
2
∥Djvj�e tþ1ð Þ

j ∥2
2 ð17Þ

where e tþ1ð Þ
j ¼ u tþ1ð Þ

j �z tð Þ
j . D tþ1ð Þ is the self-adaptive learned dic-

tionary from e tþ1ð Þ
j using the scheme described above. Due to the

unitary property of D tþ1ð Þ by using the scheme [21], the above
mathematical expression is equivalent to

v tþ1ð Þ
j ¼ arg minvj

λ
μ
∥vj∥0þ

1
2
∥vj�rj∥2

2 ð18Þ

where e tþ1ð Þ
j ¼Djrj and JDjvj�Djrj J22 ¼ Jvj�rj J22. Therefore, the

closed-form solution is expressed as the processing of hard
thresholding on the rj with the thresholding value

ffiffiffiffiffiffiffiffiffiffiffi
2λ=μ

p
.

It can be noticed that each sub-problem minimization may be
much easier than the original problem Eq. (12). In fact, we acquire
the efficient solution for each separated sub-problem, which
enables the whole soft decoding algorithm more efficient. By
averaging all the groups, each recovery pixel of the current frame
is obtained as the average of the corresponding pixels in different
groups.
4. Experiment result

In this section, we present experimental results of the divide-
and-conquer based hierarchical video compressive sensing (CS)
coding. All the experimental test video sequences are shown in
Fig. 6, these video sequences Bus, Foreman and Football are of size
352� 288 and crew and City are of size 704� 576. The block size
of BCS is set to be 32� 32. Each video sequence has 96 frames
with 12 GOPs. Concretely, the size of each block in the spatial–
temporal group is set to be 8� 8 and each spatial–temporal group
has 60 blocks. The size of training windows for searching matched
patches in current frame and its forward and backward reference
frames are set to be identical. The numbers of best matched pat-
ches in the three frames are also set as the same values.

ffiffiffiffiffiffiffiffiffiffiffi
2λ=μ

p
is

set to be 67.5. Here, by taking k¼ 4 as examples, we denote the
subrate of 1th layer frames, 2nd layer frames, 3rd layer frames and
4th layer frames as Slayer_1, Slayer_2, Slayer_3 and Slayer_4 respectively.
We set the sample subrate: S¼0.3, 0.4 and 0.5 as the average
subrate in a GOP and let Slayer_4 ¼ n4S; Slayer_3 ¼ Slayer_4þn3S ,
Slayer_2 ¼ Slayer_3þn2S , Slayer_1 ¼ Slayer_2þn1S . n1,n2,n3,n4 are object
subrate factors for each layer. Obviously, Slayer_1 has the highest
subrate value of all the layers.

The comparison is conducted on some representative techni-
ques in the literature: SPL-DWT [12], MH [24] and GSR [21] for



Fig. 6. All experimental test video sequences.

Table 1
Average PSNR in dB for several video sequences.

S Method Bus Foreman Football Crew City Average

SR-SPL-DWT 25.04 33.84 28.50 38.51 28.82 30.94
SR-MH 26.93 34.23 30.03 38.90 36.36 33.29
SR-GSR 28.10 36.04 31.96 39.05 33.52 33.72

0.3 MC-BCS-SPL 28.10 34.50 28.60 37.51 32.69 32.28
MH-BCS-SPL 27.19 36.3 28.86 39.36 33.17 32.97
Hi-1ref-GSR 28.20 35.78 32.09 38.96 33.91 33.78
Hi-STGSR 30.32 37.54 33.94 39.76 35.74 35.46

SR-SPL-DWT 26.65 35.72 32.12 40.02 29.70 32.84
SR-MH 29.04 35.74 32.14 40.38 38.18 35.09
SR-GSR 31.12 37.90 34.70 40.53 36.36 36.12

0.4 MC-BCS-SPL 31.16 36.58 30.97 39.45 35.83 34.79
MH-BCS-SPL 29.27 38.09 31.17 41.12 35.29 34.98
Hi-1ref-GSR 31.27 37.68 34.82 40.55 36.73 36.21
Hi-STGSR 33.99 39.68 36.55 41.10 38.30 37.92

SR-SPL-DWT 28.27 37.40 32.10 41.51 30.70 33.99
SR-MH 31.32 37.23 34.13 41.85 39.83 36.87
SR-GSR 34.02 39.70 36.96 41.91 38.39 38.19

0.5 MC-BCS-SPL 33.63 38.78 33.22 40.96 37.56 36.83
MH-BCS-SPL 31.31 39.69 33.50 42.81 37.28 36.91
Hi-1ref-GSR 34.27 39.66 37.11 41.96 38.78 38.35
Hi-STGSR 37.24 41.46 38.83 42.40 40.04 39.99
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each frame of the video sequences with the same sample subrate
(SR); the motion compensation (MC) based BCS-SPL [10] for the
key-frame and non-key-frame CS coding with full-pixel motion
search; the multihypothesis based key-frame and non-key-frame
video CS coding [25]; GSR with one backward reference frame for
the hierarchical based CS coding. In the proposed method, Hi-1ref-
GSR means only one reference frame is used, and Hi-STGST means
the proposed hierarchical video compressive sensing (CS) recovery
with the forward and backward reference frames.

First, the results on the uncompressed block based video CS
measurement are shown in Table 1. The PSNR comparisons for all
the test frames in three video sequences under consideration in
cases of the average frame sample subrates¼0.3, 0,4 and 0.5 are
provided in Table 1. The proposed method provides quite pro-
mising results, achieving the highest PSNR among all the com-
parative methods over all the cases. The gains of recovery
performance on the sample subrate¼0.3 by the proposed method
are more than 4.5 dB, 2.1 dB, 1.7 dB, 3.1 dB and 2.4 dB over other
methods: SR-SPL-DWT, SR-MH, SR-GSR, MC-BCS-SPL and MH-BCS-
SPL. On the sample subrate¼0.4, the recovery performance gains
by the proposed method are about 5 dB, 2.8 dB, 1.8 dB, 3.1 dB and
2.9 dB. When the sample subrate¼0.5, the proposed method
outperforms these methods: SR-SPL-DWT, SR-MH, SR-GSR, MC-
BCS-SPL and MH-BCS-SPL by 6 dB, 3.1 dB, 1.8 dB, 3.1 dB and 3 dB.
Then we focus on the result of Hi-1ref-GSR, when comparing with
Hi-1ref-GSR, the gain of the proposed method is about 1.7 dB,
1.7 dB and 1.6 dB on the different sample subrate¼0.3, 0.4 and 0.5.

Then, the results on the compressed block based video CS
measurement by DPCM [2] are shown. Following [2,8,9], the actual
bitrate is estimated using the zero order entropy of the quantizer
indexes, which can be actually produced by a real entropy coder. In
all cases, for the experiments, the quantization step is set to be 40
and sampling subrate is set to be 0.3, 0.4 and 0.5. The rate-
distortion performance in PSNR in dB and bitrate in bpp is pro-
vided in Fig. 7. From the RD performance, the proposed method
achieves the highest PSNR over all the cases. The proposed method
can improve roughly more than 3.3 dB, 1.7 dB and 0.7 dB on
average in comparison with SR-SPL-DWT, SR-MH and SR-GSR. The
performances of the proposed method are 0.9 dB and 1 dB higher
than MC-BCS-SPL and MH-BCS-SPL. The reconstruction of the
proposed method achieves 0.6 dB higher performances on average
than Hi-1ref-GSR with the same coded CS measurements.
5. Conclusion

The divide-and-conquer based hierarchical video compressive
sensing (CS) coding framework is proposed, in which the whole
video is independently divided into non-overlapped blocks of the
hierarchical frames. The proposed hierarchical based framework
outperforms the traditional framework through the better
exploitation of frames correlation with reference frames, the
unequal sample subrates setting among frames in different layers
and the reduction of the error propagation. At the encoder, com-
pare with the video/frame based CS, the proposed hierarchical
block based CS matrix can be easily implemented and stored in
hardware. Each measurement of the block in different hierarchical
frame is obtained with the different sample subrates. At the



Fig. 7. The rate-distortion performance on test videos.
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decoder, by considering the spatial and temporal correlations of
the video sequence, a spatial–temporal sparse representation
based recovery is proposed, in which the similar blocks in both the
current frame and these recovered reference frames are composed
as a spatial–temporal group unit to be sparse represented. At the
decoder, by considering the spatial and temporal correlations of
the video sequence, a spatial–temporal sparse representation
based recovery is proposed, in which the similar blocks in the
current frame and these recovered reference frames are organized
as a spatial–temporal group unit to be represented sparsely.
Finally, the recovery problem of video compressive sensing coding
can be solved by adopting the split Bregman iteration. Experi-
mental results show that the proposed method achieves better
performance against SR-SPL-DWT, SR-MH, SR-GSR, MC-BCS-SPL
and MH-BCS-SPL.
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