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Abstract. This paper presents a method for face detection in the wild,
which integrates a ConvNet and a 3D mean face model in an end-to-end
multi-task discriminative learning framework. The 3D mean face model
is predefined and fixed (e.g., we used the one provided in the AFLW
dataset). The ConvNet consists of two components: (i) The face pro-
posal component computes face bounding box proposals via estimating
facial key-points and the 3D transformation (rotation and translation)
parameters for each predicted key-point w.r.t. the 3D mean face model.
(ii) The face verification component computes detection results by prun-
ing and refining proposals based on facial key-points based configuration
pooling. The proposed method addresses two issues in adapting state-
of-the-art generic object detection ConvNets (e.g., faster R-CNN) for
face detection: (i) One is to eliminate the heuristic design of predefined
anchor boxes in the region proposals network (RPN) by exploiting a 3D
mean face model. (ii) The other is to replace the generic RoI (Region-
of-Interest) pooling layer with a configuration pooling layer to respect
underlying object structures. The multi-task loss consists of three terms:
the classification Softmax loss and the location smooth l1-losses of both
the facial key-points and the face bounding boxes. In experiments, our
ConvNet is trained on the AFLW dataset only and tested on the FDDB
benchmark with fine-tuning and on the AFW benchmark without fine-
tuning. The proposed method obtains very competitive state-of-the-art
performance in the two benchmarks.
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1 Introduction

1.1 Motivation and Objective

Face detection has been used as a core module in a wide spectrum of applications
such as surveillance, mobile communication and human-computer interaction. It
is arguably one of the most successful applications of computer vision. Face
detection in the wild continues to play an important role in the era of visual
big data (e.g., images and videos on the web and in social media). However, it
remains a challenging problem in computer vision due to the large appearance
variations caused by nuisance variabilities including viewpoints, occlusion, facial
expression, resolution, illumination and cosmetics, etc.

It has been a long history that computer vision researchers study how
to learn a better representation for unconstrained faces [12,34,40]. Recently,
together with large-scale annotated image datasets such as the ImageNet [8],
deep ConvNets [21,22] have made significant progress in generic object detection
[14,16,32], as well as in face detection [23,30]. The success is generally considered
to be due to the region proposal methods and region-based ConvNets (R-CNN)
[15]. The two factors used to be addressed separately (e.g., the popular combi-
nation of the Selective Search [37] and R-CNNs pretrained on the ImageNet),
and now they are integrated through introducing the region proposal networks
(RPNs) as done in the faster-RCNN [32] or are merged into a single pipeline for
speeding up the detection as done in [26,31]. In R-CNNs, one key layer is the
so-called RoI (Region-of-Interest) pooling layer [14], which divides a valid RoI
(e.g., an object bounding box proposal) evenly into a grid with a fixed spatial
extent (e.g., 7 × 7) and then uses max-pooling to convert the features inside the
RoI into a small feature map. In this paper, we are interested in adapting state-
of-the-art ConvNets of generic object detection (e.g., the faster R-CNN [32]) for
face detection by overcoming the following two limitations:

Fig. 1. Some example results in the FDDB face benchmark [19] computed by the
proposed method. For each testing image, we show the detection results (left) and the
corresponding heat map of facial key-points with the legend shown in the right most
column. (Best viewed in color) (Color figure online)
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Fig. 2. Illustration of the proposed method of an end-to-end integration of a ConvNet
and a 3D model for face detection (Top), and some intermediate and the final detection
results for an input testing image (Bottom). See the legend for the classification score
heat map in Fig. 1. The 3D mean face model is predefined and fixed in both training
and testing. The key idea of the proposed method is to learn a ConvNet to estimate
the 3D transformation parameters (rotation and translation) w.r.t. the 3D mean face
model to generate accurate face proposals and predict the face key points. The proposed
ConvNet is trained in a multi-task discriminative training framework consisting of the
classification Softmax loss and the location smooth l1-losses [14] of both the facial
key-points and the face bounding boxes. It is surprisingly simple w.r.t. its competitive
state-of-the-art performance compared to the other methods in the popular FDDB
benchmark [19] and the AFW benchmark [41]. See text for details. (Color figure online)

(i) RPNs need to predefine a number of anchor boxes (with different aspect
ratios and sizes), which requires potentially tedious parameter tuning in
training and is sensitive to the (unknown) distribution of the aspect ratios
and sizes of the object instances in a random testing image.

(ii) The RoI pooling layer in R-CNNs is predefined and generic to all object
categories without exploiting the underlying object structural configura-
tions, which either are available from the annotations in the training dataset
(e.g., the facial landmark annotations in the AFLW dataset [20]) as done
in [41] or can be pursued during learning (such as the deformable part-based
models [10,30]).



Face Detection with a ConvNet and a 3D Model 423

To address the two above issues in learning ConvNets for face detection, we
propose to integrate a ConvNet and a 3D mean face model in an end-to-end
multi-task discriminative learning framework. Figure 1 shows some results of the
proposed method.

1.2 Method Overview

Figure 2 illustrates the proposed method. We use 10 facial key-points in
this paper, including “LeftEyeLeftCorner”, “RightEyeRightCorner”, “LeftEar”,
“NoseLeft”, “NoseRight”, “RightEar”, “MouthLeftCorner”, “MouthRight-
Corner”, “ChinCenter”, “CenterBetweenEyes” (see an example image in the left-
top of Fig. 2). The 3D mean face model is then represented by the corresponding
ten 3D facial key-points. The architecture of our ConvNet is straight-forward
when taking into account a 3D model (see Sect. 3.2 for details).

The key idea is to learn a ConvNet to (i) estimate the 3D transfor-
mation parameters (rotation and translation) w.r.t. the 3D mean face
model for each detected facial key-point so that we can generate face
bounding box proposals and (ii) predict facial key-points for each face
instance more accurately. Leveraging the 3D mean face model is able to “kill
two birds with one stone”: Firstly, we can eliminate the manually heuristic design
of anchor boxes in RPNs. Secondly, instead of using the generic RoI pooling, we
devise a “configuration pooling” layer so as to respect the object structural con-
figurations in a meaningful and principled way. In other words, we propose to
learn to compute the proposals in a straight-forward top-down manner, instead
of to design the bottom-up heuristic and then learn related regression parame-
ters. To do so, we assume a 3D mean face model is available and facial key-points
are annotated in the training dataset. Thanks to many excellent existing work
in collecting and annotating face datasets, we can easily obtain both for faces
nowadays. In learning, we have multiple types of losses involved in the objective
loss function, including classification Softmax loss and location smooth l1-loss
[14] of facial key-points, and location smooth l1-loss of face bounding boxes
respectively, so we formulate the learning of the proposed ConvNet under the
multi-task discriminative deep learning framework (see Sect. 3.3).

In summary, we provide a clean and straight-forward solution for end-to-end
integration of a ConvNet and a 3D model for face detection1. In addition to the
competitive performance w.r.t the state-of-the-art face detection methods on the
FDDB and AFW benchmarks, the proposed method is surprisingly simple and
it is able to detect challenging faces (e.g., small, blurry, heavily occluded and
extreme poses).

Potentially, the proposed method can be utilized to learn to detect other
rigid or semi-rigid object categories (such as cars) if the required information
(such as the 3D model and key-point/part annotation) are provided in training.

1 We use the open source deep learning package, MXNet [5], in our imple-
mentation. The full source code is released at https://github.com/tfwu/
FaceDetection-ConvNet-3D.

https://github.com/tfwu/FaceDetection-ConvNet-3D
https://github.com/tfwu/FaceDetection-ConvNet-3D
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2 Related Work

There are a tremendous amount of existing works on face detection or generic
object detection. We refer to [40] for a more thorough survey on face detection.
We discuss some of the most relevant ones in this section.

In human/animal vision, how the brain distills a representation of objects
from retinal input is one of the central challenges for systems neuroscience, and
many works have been focused on the ecologically important class of objects–
faces. Studies using fMRI experiments in the macaque reveal that faces are
represented by a system of six discrete, strongly interconnected regions which
illustrates hierarchical information processing in the brain [12], as well as some
other results [34]. These findings provide some biologically-plausible evidences
for supporting the usage of deep learning based approaches in face detection and
analysis.

The seminal work of Viola and Jones [38] made face detection by a com-
puter vision system feasible in real world applications, which trained a cascade
of AdaBoost classifiers using Haar wavelet features. Many works followed this
direction with different extensions proposed in four aspects: appearance features
(beside Haar) including Histogram of Oriented Gradients (HOG) [7], Aggre-
gate Channel Features (ACF) [9], Local Binary Pattern (LBP) features [1] and
SURF [3], etc.; detector structures (beside cascade) including the the scalar
tree [11] and the width-first-search tree [18], etc.; strong classifier learning (beside
AdaBoost) including RealBoost [33] and GentleBoost [13], ect; weak classifier
learning (beside stump function) including the histogram method [25] and the
joint binarizations of Haar-like feature [28], etc.

Most of the recent face detectors are based on the deformable part-based
model (DPM) [10,27,41] with HOG features used, where a face is represented
by a collection of parts defined based on either facial landmarks or heuristic
pursuit as done in the original DPM. [27] showed that a properly trained vanilla
DPM can yield significant improvement for face detection.

More recent advances in deep learning [21,22] further boosted the face detec-
tion performance by learning more discriminative features from large-scale raw
data, going beyond those handcrafted ones. In the FDDB benchmark, most of the
face detectors with top performance are based on ConvNets [23,30], combining
with cascade [23] and more explicit structure [39].

3D information has been exploited in learning object models in different ways.
Some works [29,35] used a mixture of 3D view based templates by dividing the
view sphere into a number of sectors. [17,24] utilized 3D models in extracting
features and inferring the object pose hypothesis based on EM or DP. [36] used
a 3D face model for aligning faces in learning ConvNets for face recognition. Our
work resembles [2] in exploiting 3D model in face detection, which obtained very
good performance in the FDDB benchmark. [2] computes meaningful 3D pose
candidates by image-based regression from detected face key-points with tradi-
tional handcrafted features, and verifies the 3D pose candidates by a parameter
sensitive classifier based on difference features relative to the 3D pose. Our work
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integrates a ConvNet and a 3D model in an end-to-end multi-task discriminative
learning fashion, which is more straightforward and simpler compared to [2].

Our Contributions. The proposed method contributes to face detection in
three aspects.

(i) It presents a simple yet effective method to integrate a ConvNet and a 3D
model in an end-to-end learning with multi-task loss used for face detection
in the wild.

(ii) It addresses two limitations in adapting the state-of-the-art faster
RCNN [32] for face detection: eliminating the heuristic design of anchor
boxes by leveraging a 3D model, and replacing the generic and predefined
RoI pooling with a configuration pooling which exploits the underlying object
structural configurations.

(iii) It obtains very competitive state-of-the-art performance in the FDDB [19]
and AFW [41] benchmarks.

Paper Organization. The remainder of this paper is organized as follows.
Section 3 presents the method of face detection using a 3D model and details of
our ConvNet including its architecture and training procedure. Section 4 presents
details of experimental settings and shows the experimental results in the FDDB
and AFW benchmarks. Section 5 first concludes this paper and then discuss some
on-going and future work to extend the proposed work.

3 The Proposed Method

In this section, we introduce the notations and present details of the proposed
method.

3.1 3D Mean Face Model and Face Representation

In this paper, a 3D mean face model is represented by a collection of n 3D
key-points in the form of (x, y, z) and then is denoted by a n × 3 matrix, F (3).
Usually, each key-point has its own semantic name. We use the 3D mean face
model in the AFLW dataset [20] which consists of 21 key-points. We select 10
key-points as stated above.

A face, denoted by f , is presented by its 3D transformation parameters, Θ,
for rotation and translation, and a collection of 2D key-points, F (2), in the form
of (x, y) (with the number being less than or equal to n). Hence, f = (Θ,F (2)).
The 3D transformation parameters Θ are defined by,

Θ = (μ, s,A(3)), (1)

where μ represents a 2D translation (dx, dy), s a scaling factor, and A(3) a 3× 3
rotation matrix. We can compute the predicted 2D key-points by,

F̂ (2) = μ + s · π(A(3) · F (3)), (2)
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where π() projects a 3D key-point to a 2D one, that is, π : R
3 → R

2 and
π(x, y, z) = (x, y). Due to the projection π(), we only need 8 parameters out of
the original 12 parameters. Let A(2) denote a 2 × 3 matrix, which is composed
by the top two rows of A(3). We can re-produce the predicted 2D key-points by,

F̂ (2) = μ + A(2) · F (3) (3)

which makes it easy to implement the computation of back-propagation in train-
ing our ConvNet.

Note that we use the first sector in a 4-sector X-Y coordinate system to
define all the positions, that is, the origin point (0, 0) is defined by the left-
bottom corner in an image lattice.

In face datasets, faces are usually annotated with bounding boxes. In the
FDDB benchmark [19], however, faces are annotated with ellipses and detection
performance are evaluated based on ellipses. Given a set of predicted 2D key-
points F̂ (2), we can compute proposals in both ellipse form and bounding box
form.

Computing a Face Ellipse and a Face Bounding Box based on a set of Pre-
dicted 2D Key-Points. For a given F̂ (2), we first predict the position of the top
of head by,

( x
y

)
TopOfHead

= 2 × ( x
y

)
CenterBetweenEyes

− ( x
y

)
ChinCenter

.

Based on the keypoints of a face proposal, we can compute its ellipse and bound-
ing box.

Face Ellipse. We first compute the outer rectangle. We use as one axis the
line segment between the top-of-the-head key-point and the chin key-point, and
then compute the minimum rectangle, usually a rotated rectangle, which covers
all the key-points. Then, we can compute the ellipse using the two edges of the
(rotated) rectangle as the major and minor axes respectively.

Face Bounding Box. We compute a face bounding box by the minimum up-
right rectangle which covers all the key-points, which is also adopted in the
FDDB benchmark [19].

3.2 The Architecture of Our ConvNet

As illustrated in Fig. 2, the architecture of our ConvNet consists of:

(i) Convolution, ReLu and MaxPooling Layers. We adopt the VGG [4] design
in our experiments which has shown superior performance in a series of
tasks. There are 5 groups and each group has 3 convolution and ReLu
consecutive layers followed by a MaxPooling layer except for the 5th group.
The spatial extent of the final feature map is of 16 times smaller than that
of an input image due to the sub-sampling.

(ii) An Upsampling Layer. Since we will measure the location difference
between the input facial key-points and the predicted ones, we add an
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upsampling layer to compensate the sub-sampling effects in previous lay-
ers. It is implemented by deconvolution. We upsample the feature maps
to 8 times bigger in size (i.e., the upsampled feature maps are still quarter
size of an input image) considering the trade-off between key-point location
accuracy, memory consumption and computation efficiency.

(iii) A Facial Key-point Label Prediction Layer. There are 11 labels (10 facial
key-points and 1 background class). It is used to compute the classification
Softmax loss based on the input in training.

(iv) A 3D Transformation Parameter Estimation Layer. This is the key obser-
vation in this paper. Originally, there are 12 parameters in total consisting
of 2D translation, scaling and 3 × 3 rotation matrix. Since we focus on the
2D projected key-points, we only need to account for 8 parameters (see the
derivation above).

(v) A Face Proposal Layer. At each position, based on the 3D mean face model
and the estimated 3D transformation parameters, we can compute a face
proposal consisting of 10 predicted facial key-points and the corresponding
face bounding box. The score of a face proposal is the sum of log probabili-
ties of the 10 predicted facial key-points. The predicated key-points will be
used to compute the smooth l1 loss [14] w.r.t. the ground-truth key-points.
We apply the non-maximum suppression (NMS) to the face proposals in
which the overlap between two bounding boxes a and b is computed by
|a|∩|b|

|b| (where | · | represents the area of a bounding box), instead of the
traditional intersection-over-union, accounting for the fact that it is rarely
observed that one face is inside another one.

(vi) A Configuration Pooling Layer. After NMS, for each face proposal, we pool
the features based on the predicted 10 facial key-points. Here, for simplicity,
we use all the 10 key-points without considering the invisibilities of certain
key-points in different face examples.

(vii) A Face Bounding Box Regression Layer. It is used to further refine face
bounding boxes in the spirit similar to the method [14]. Based on the
configuration pooling, we add two fully-connected layers to implement the
regression. It is used to compute the smooth l1 loss of face bounding boxes.

Denote by ω all the parameters in our ConvNet, which will be estimated
through multi-task discriminative end-to-end learning.

3.3 The End-to-End Training

Input Data. Denote by C = {0, 1, · · · , 10} as the key-point labels where � = 0
represents the background class. We use the image-centric sampling trick as done
in [14,32]. Without loss of generality, considering a training image with only one
face appeared, we have its bounding box, B = (x, y, w, h) and m 2D key-points
(m ≤ 10), {(xi, �i)m

i=1} where xi = (xi, yi) is the 2D position of the ith key-point
and �i ≥ 1 ∈ C. We randomly sample m locations outside the face bounding box
B as the background class, {(xi, �i)2m

i=m+1} (where �i = 0,∀i > m). Note that
in our ConvNet, we use the coordinate of the upsampled feature map which is
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half size along both axes of the original input. All the key-points and bounding
boxes are defined accordingly based on ground-truth annotation.

The Classification Softmax Loss of Key-point Labels. At each posi-
tion xi, our ConvNet outputs a discrete probability distribution, pxi =
(pxi

0 , pxi
1 , · · · , pxi

10), over the 11 classes, which is computed by the Softmax over
the 11 scores as usual [21]. Then, we have the loss,

Lcls(ω) = − 1
2m

2m∑

i=1

log(pxi

�i
) (4)

The Smooth l1 Loss of Key-point Locations. At each key-point location
xi (�i ≥ 1), we compute a face proposal based on the estimated 3D parameters
and the 3D mean face, denoted by {(x̂(i)

j , �̂
(i)
j )10j=1} the predicted 10 keypoints.

So, for each key-point location xi, we will have m predicted locations, denoted
by x̂i,j (j = 1, · · · ,m). We follow the definition in [14] to compute the smooth
l1 loss for each axis individually.

Lpt
loc(ω) =

1
m2

m∑

i=1

m∑

j=1

∑

t∈{x,y}
Smoothl1(ti − t̂i,j) (5)

where the smooth term is defined by,

Smoothl1(a) =

{
0.5a2 if |a| < 1
|a| − 0.5 otherwise.

(6)

Faceness Score. The faceness score of a face proposal in our ConvNet is com-
puted by the sum of log probabilities of the predicted key-points,

Score(x̂i, �̂i) =
10∑

i=1

log(px̂i

�̂i
) (7)

where for simplicity we do not account for the invisibilities of certain key-points.
So the current faceness score has the issue of potential double-counting, espe-
cially for low-resolution faces. We observed that it hurts the quantitative perfor-
mance in our experiments. We will address this issue in future work. See some
heat maps of key-points in Fig. 1.

The Smooth l1 Loss of Bounding Boxes. For each face bounding box pro-
posal B̂ (after NMS), our ConvNet computes its bounding box regression offsets,
t = (tx, ty, tw, th), where t specifies a scale-invariant translation and log-space
height/width shift relative to a proposal, as done in [14,32]. For the ground-truth
bounding box B, we do the same parameterization and have v = (vx, vy, vw, vh).
Assuming that there are K bounding box proposals, we have,

Lbox
loc (ω) =

1
K

K∑

k=1

∑

i∈{x,y,w,h}
Smoothl1(ti − vi) (8)
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So, the overall loss function is defined by,

L(ω) = Lcls(ω) + Lpt
loc(ω) + Lbox

loc (ω), (9)

where the third term depends on the output of the first two terms, which makes
the loss minimization more challenging. We adopt a method to implement the
differentiable bounding box warping layer, similar to [6].

4 Experiments

In this section, we present the training procedure and implementation details
and then show evaluation results on the FDDB [19] and AFW [41] benchmarks.

4.1 Experimental Settings

The Training Dataset. The only dataset we used for training our model is the
AFLW dataset [20], which contains 25, 993 annotated faces in real-world images.
The facial key-points are annotated upon visibility w.r.t. a 3D mean face model
with 21 landmarks. Of the images 70 % are used for training while the remaining
is reserved as a validation set.

Training process. For convenience, the short edge of every image is resized to
600 pixels while preserving the aspect ratio (as done in the faster RCNN [32]),
thus our model learns how to handle faces under various scale. To handle faces
of different resolution, we randomly blur images using Gaussian filters in pre-
processing. Apart from the rescaling and blurring, no other preprocessing mech-
anisms (e.g., random crop or left-right flipping) are used.

We adopt the method of image-centric sampling [14,32] which uses one image
at a time in training. Under the consideration that grids around the labeled
position share almost the same context information, thus the 3 × 3 grids around
every labeled key-point’s position are also regarded as the same positive exam-
ples, and we randomly choose the same amount of background examples outside
the bounding boxes. The convolution filters are initialized by the VGG-16 [4]
pretrained on the ImageNet [8]. We train the network for 13 epoch, and during
the process, the learning rate is modified from 0.01 to 0.0001.

4.2 Evaluation of the Intermediate Results

Key-points classification in the validation dataset. As are shown by the
heat maps in Fig. 1, our model is capable of detecting facial key-points with
rough face configurations preserved, which shows the effectiveness of exploiting
the 3D mean face model. Table 1 shows the key-point classification accuracy on
the validation set in the last epoch in training.

Face proposals. To evaluate the quality of our face proposals, we first show
some qualitative results on the FDDB dataset in Fig. 3. These ellipses are directly
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Table 1. Classification accuracy of the key-points in the AFLW validation set at the
end training.

Category Accuracy Category Accuracy

Background 97.94 % LeftEyeLeftCorner 99.12 %

RightEyeRightCorner 94.57 % LeftEar 95.50 %

NoseLeft 98.48 % NoseRight 97.78 %

RightEar 91.44 % MouthLeftCorner 97.97 %

MouthRightCorner 98.64 % ChinCenter 98.65 %

CenterBetweenEyes 96.04 % AverageDetectionRate 97.50 %

Fig. 3. Examples of face proposals computed using predicted 3D transformation para-
meters without non-maximum suppression. For clarity, we randomly sample 1/30 of
the original number of proposals.

calculated from the predicted 3D transformation parameters, forming several
clusters around face instances. We also evaluate the quantitative results of face
proposals. After a non-maximum suppression of IoU 0.7, the recall rate of 93.67 %
is obtained with average 34.4 proposals per image.

4.3 Face Detection Results

To show the effectiveness of our method, we test our model on two popular face
detection benchmarks: FDDB [19] and AFW [41].

Results on FDDB. FDDB is a challenge benchmark for face detection in
unconstrained environment, which contains the annotations for 5171 faces in a
set of 2845 images. We evaluate our results by using the evaluation code provided
by the FDDB authors. The results on the FDDB dataset are shown in Fig. 4. Our
result is represented by “Ours-Conv3D”, which surpasses the recall rate of 90 %
when encountering 2000 false positives and is competitive to the state-of-the-
art methods. We compare with published methods only. Only DP2MFD [30] is
slightly better than our model on discrete scores. It’s worth noting that we beat
all other methods on continuous scores. This is partly caused by the predefined
3D face model helps us better describe the pose and part locations of faces.
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Fig. 4. FDDB results based on discrete scores using face bounding boxes in evaluation.
The recall rates are computed against 2000 false positives.
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Ours-Conv3D (0.766512)

Fig. 5. FDDB results based on continuous scores using face ellipses in evaluation. The
recall rates are computed against 2000 false positives.

We refer to the FDDB result webpage2 for details of the published methods
evaluated on it (Figs. 4 and 5).

When comparing with recent work Faceness [39], we both recognize that one
of the central issues to alleviate the problems of the occlusion and pose variation
is to introduce facial part detector. However, our mechanism of computing face
bounding box candidates is more straight forward since we explicitly integrate
the structural information of a 3D mean face model instead of using a heuristic
way of assuming the facial part distribution over a bounding box.

2 http://vis-www.cs.umass.edu/fddb/results.html.

http://vis-www.cs.umass.edu/fddb/results.html
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Fig. 6. Precision-recall curves on the AFW dataset (AP = average precision) without
configuration pool and face bounding box regression used.

Fig. 7. Some qualitative results on the FDDB dataset

Results on AFW. AFW dataset contains 205 images with faces in various poses
and view points. We use the evaluation toolbox provided by [27], which contains
updated annotations for the AFW dataset where the original annotations are
not comprehensive enough. Since the method of labeling face bounding boxes
in AFW is different from that of in FDDB, we only use face proposals without
configuration pooling and bounding box regression. The results on AFW are
shown in Fig. 6.
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Fig. 8. Some qualitative results on the AFW dataset

In our current implementation, there is one major limitation that prevents us
from achieving better results. We do not explicitly handle invisible facial parts,
which would be harmful when calculating the faceness score according to Eq. 7,
we will refine the method and introduce mechanisms of handling the invisible
problem in future work. More detection results on both datasets are shown in
Figs. 7 and 8.

5 Conclusion and Discussion

We have presented a method of end-to-end integration of a ConvNet and a 3D
model for face detection in the wild. Our method is a clean and straightfor-
ward solution when taking into account a 3D model in face detection. It also
addresses two issues in state-of-the-art generic object detection ConvNets: elim-
inating heuristic design of anchor boxes by leveraging a 3D model, and overcom-
ing generic and predefined RoI pooling by configuration pooling which exploits
underlying object configurations. In experiments, we tested our method on two
benchmarks, the FDDB dataset and the AFW dataset, with very compatible
state-of-the-art performance obtained. We analyzed the experimental results and
pointed out some current limitations.
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In our on-going work, we are working on addressing the doubling-counting
issue of the faceness score in the current implementation. We are also working on
extending the proposed method for other types of rigid/semi-rigid object classes
(e.g., cars). We expect that we will have a unified model for cars and faces which
can achieve state-of-the-art performance, which will be very useful in a lot of
practical applications such as surveillance and driveless cars.
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