
PROGRESSIVE MOTION VECTOR RESOLUTION FOR HEVC

Juncheng Ma
1
, Jicheng An

2
, Kai Zhang

2
, Siwei Ma

1
, Shawmin Lei

2

{
1
jcma,

1
swma}@pku.edu.cn

1
Institute of Digital Media, Peking University, Beijing 100871, China

{
2
jicheng.an,

2
kai.zhang,

2
shawmin.lei}@mediatek.com

2
North Building 10F, Raycom Infotech Park Tower C, No. 2 Kexueyuan South Rd., Haidian District,

Beijing 100190, China

ABSTRACT

This paper proposes a progressive motion vector resolution

(PMVR) method for High Efficiency Video Coding

(HEVC). In the proposed scheme, high motion vector (MV)

resolutions, e.g. 1/4 or 1/8 pixel resolution, are employed

for MVs near to the motion vector predictor (MVP) and low

MV resolutions are employed for MVs far from the MVP.

The range of each MV resolution is indicated by a threshold

parameter. And a new motion vector difference (MVD)

derivation method is designed to encode MVD efficiently.

Experimental results show that PMVR with 1/8 pixel

motion search can achieve a BD-rate gain up to 16% with

almost the same coding time with HM8.0, and for PMVR

without 1/8 pixel motion search, up to 6.1% BD-rate gain

can be achieved with 9% encoding time saving on average.

Index Terms— video coding, HEVC, MV resolution,

MVD

1. INTRODUCTION

During the past decade, the rapid development of digital

video compression technology has promoted the prosperity

of digital video industry, including digital TVs, digital

cameras, etc. The latest video coding standard HEVC [1] is

developed by the Joint Collaborative Team on Video

Coding (JCT-VC), which is formed by the ISO/IEC MPEG

and ITU-T VCEG standardization organizations. So far,

HEVC has been released, and it can achieve 50% or even

more bits saving compared to H.264/AVC [2] with

comparable visual quality.

Motion prediction and motion vector (MV) coding

plays a key role in video coding process. Usually, higher

resolution MV can achieve more accurate motion

compensation, but the problem is high resolution MV will

also increase the coding overhead of MV. So it is very

important to achieve a good balance between the motion

vector resolution and the coding overhead. In the state-of-

the-art video coding standards, usually 1/4 pixel MV

resolution is used for luma prediction. Moreover, to reduce

the bits used for MV coding, a motion vector predictor

(MVP) is derived from the spatial and temporal neighboring

blocks, and MV is actually coded as the difference between

the MV and MVP. In HEVC, an advanced motion vector

prediction (AMVP) scheme is designed, in which a motion

vector candidates set is constructed from the spatial

neighboring blocks and the temporal co-located block in the

reference picture, and the best MVP is selected with the

optimal rate distortion cost. Moreover, a “merge” mode is

added for inter prediction, allowing the inheritance of MVs

from the neighboring prediction units (PUs) [3][4], and skip

mode is actually a special case of merge mode when the

residuals of current block are all equal to zero.

In the standardization process of HEVC, the MV

coding has been widely studied. In JCTVC-A121 [5], an

adaptive motion vector resolution (AMVR) method is

proposed, in which MV resolution is adaptively selected

between 1/4 and 1/8 pixel for each block. To signal the MV

resolution to the decoder, additional parameters have to be

coded at block level. Therefore, the performance of AMVR

is degraded due to the increasing overhead.

In this paper, we propose a progressive motion vector

resolution (PMVR) method for HEVC. In PMVR, the MV

resolution can be progressively decreased with the

increasing magnitude of the MVD. The range of higher MV

resolution is controlled by thresholds signaled at slice level,

which can reduce the overhead coding compared with

AMVR. Moreover, an efficient MVD coding method is

proposed, to improve the coding efficiency further.

The rest of the paper is organized as follows. Section 2

presents an overview of motion vector coding techniques in

HEVC. Section 3 describes the proposed PMVR method.

Experimental results and analysis are presented in Section 4.

Finally Section 5 concludes the paper.

2. OVERVIEW OF MOTION VECTOR CODING

TECHNIQUES IN HEVC

In HEVC, two inter-prediction modes are employed for

inter coding blocks: inter mode and merge mode. For inter

mode, the advanced motion vector prediction (AMVP)

method is used for MVP derivation. The AMVP candidates

include two spatial MV candidates and one temporal MV

candidate in each reference frame, and the best one is

selected with rate-distortion optimization (RDO) decision

[6]. The index of the optimal MV candidate and the

reference picture are explicitly transmitted to the decoder.

Generally, motion estimation is performed around the

selected MVP, and the difference between the MVP and the

actual MV is also signaled in the bit stream. For merge

mode, however, the motion information is directly inherited

from one of the spatial neighboring blocks or a temporal co-

located block on the reference picture with minimum POC

difference from current picture within reference picture list

0 or list 1. The reference picture list flag is signaled in the

slice header. Therefore, no motion information is needed for

the decoder but a “merge index” is coded to indicate which

candidate to be used. Particularly, the skip mode is actually

a special case of merge mode when the residuals of current

block are all equal to zero.

Given the reference picture list and index, the spatial

and temporal MV prediction candidates are shown in Fig. 1.

For AMVP, the two spatial candidates are derived based on

the five spatial neighbor blocks (A0, A1, B0, B1 and B2).

The first MV candidate is selected from A0 and A1 in order,

and the second one from B0, B1 and B2 in order. If a

neighbor block is unavailable or intra coded, then the MV

candidate corresponding to this block is ignored. The

temporal MV candidate is scaled from the MV of the co-

located block based on the POC distances, as shown in Fig.

2. The co-located block is T0 by default if it is available,

inside the current coding tree unit (CTU) and not intra

coded, otherwise T1 will be selected. Finally, if the number

of the selected MV candidates is less than two, zero MV

candidates will be added to make sure it equals to two.

B1 B0B2

A1

A0

T1

T0

Fig.1. MV candidate set for inter, merge and skip mode

For merge and skip mode, they share the same candidate

set with AMVP except for different derivation method.

Firstly, for spatial merge candidates, the five neighbor

blocks are checked in order A1, B1, B0, A0 and B2, and B2

is considered only when any of the four previous blocks is

unavailable or coded in intra mode. Secondly, the temporal

merge candidate derivation is the same as AMVP, except

that no reference picture index is signaled to decoder.

Finally, if the number of merge candidates doesn't reach the

maximum number of merge candidates (signaled in the slice

header), combined bi-predictive merge candidates using two

candidates in different reference list found during the first

two steps (only for B slices) and zero MV candidates are

added until the condition is met.

 Curr_dist

 Col_MV
 Scaled_MV

 Col_dist

Curr_pic Col_picCurr_refCol_ref

Col_blockCurr_block

Fig.2. MV scaling for temporal MV candidate

3. PROPOSED PMVR METHOD

In both H.264/AVC and HEVC, it is observed that MV

close to the MVP is more likely to be optimal in the rate

distortion sense. For pixel positions closer to the MVP, it is

worth searching MV with higher accuracy. Otherwise, for

pixel positions farther from the MVP, which are less likely

to be optimal, lower accuracy is enough for MV search.

Therefore, it is proposed to employ different MV

resolutions in a progressive manner. That is, using higher

MV resolution for MVs near to the MVP and lower MV

resolution for MVs far from the MVP. As we know, the MV

resolution is always set to 1/4 pixel in HEVC. In principle,

PMVR can support any number of resolutions. However,

only up to three sub-pixel resolutions (1/8, 1/4, and 1/2

pixel) are supported as a tradeoff between the coding

performance and complexity.

3.1. Limited 1/4 pixel and 1/8 pixel positions

First, to support 1/8 pixel resolution, 1/8 pixel luma

interpolation filter and 1/16 pixel chroma interpolation filter

are derived using the DCT-IF method [7], as shown in Table

1.

Table 1. Proposed interpolation filter

(a) 8-tap 6-bit 1/8 pixel luma interpolation filter

Position Filter Coefficients

1/8 {-1, 3, -6, 62, 9, -4, 2, -1}

3/8 {-2, 5, -12, 50, 30, -10, 4, -1}

(b) 4-tap 6-bit 1/16 pixel chroma interpolation filter

Position Filter Coefficients

1/16 {-2, 63, 4 -1}

3/16 {-5, 59, 13 -3}

5/16 {-6, 52, 23, -5}

7/16 {-7, 43, 34, -6}

The 1/4 (1/8) pixel MV positions are disabled when

they are outside of the specific 1/4 (1/8) pixel range. Fig. 3

illustrates the MV resolution restriction, in which the red

square indicates the 1/4 pixel range and the blue square

indicates the 1/8 pixel range.

Integer/Half pixel
position

1/4 pixel
position

1/8 pixel
position

CTRq

MVDx

MVDy

MVP

THq=4

THe=2

CTRe
Fig. 3. MV resolution range in PMVR when the MVP is at half

pixel position ((THq, THe) = (4, 2))

The variables THq and THe are two thresholds (in units

of 1/8 pixel) to define the square range size of 1/4 pixel

position and 1/8 pixel position respectively. THq and THe

are restricted to be exact multiples of 2 and 4, respectively.

Furthermore, THq should not be less than THe.

CTRq (CTRqx, CTRqy) and CTRe (CTRex, CTRey) are

the center of the range of 1/4 pixel and 1/8 pixel positions,

and they are derived from the MVP (MVPx, MVPy) as

follows:

CTRex = (MVPx >> 1) << 1 (1)

CTRey = (MVPy >> 1) << 1 (2)

CTRqx = ((MVPx+1) >> 2) << 2 (3)

CTRqy = ((MVPy+1) >> 2) << 2 (4)

It can be seen from (1)-(4) that CTRe is the nearest

quarter pixel position to MVP and CTRq is the nearest half

pixel position to MVP. If the MVP is just at integer or half

pixel positions, then the MVP, CTRq and CTRe coincide as

shown in Fig. 3; If the MVP is at 1/4 pixel position, the

MVP and CTRe coincide, but the CTRq is converted to

integer or half pixel position from the MVP as shown in (3)-

(4); If the MVP is at 1/8 pixel position as shown in Fig. 4,

both the CTRq and CTRe are converted to integer or half

pixel position from the MVP as shown in (1)-(4).

For an extreme case, when THe = 0, the 1/8 pixel MV

resolution is actually disabled except for skip and merge

mode. In this case, the MVP of inter mode except skip and

merge mode has to be converted to 1/4 pixel accuracy as

follows:

MVPx = (MVPx >> 1) << 1 (5)

MVPy = (MVPy >> 1) << 1 (6)

Furthermore, when THe = THq = 0, even the 1/4 pixel MV

resolution is disabled. In this case, the MVP of inter mode

except skip and merge mode should be converted to half

pixel accuracy as follows:

MVPx = (MVPx >> 2) << 2 (7)

MVPy = (MVPy >> 2) << 2 (8)

Integer/Half pixel
position

1/4 pixel
position

1/8 pixel
position

CTRq

B

A

C

MVDx

MVDy

MVP

THq=4

THe=2

CTRe

The top-left sample of
the current block

Fig. 4. MV resolution range in PMVR when the MVP is at 1/8

pixel position ((THq, THe) = (4, 2))

With the proposed limited 1/4 pixel and 1/8 pixel MV

positions, the motion estimation can be simplified. For each

1/4 pixel MV candidate MVC (MVCx, MVCy), if |MVCx –

CTRx| > THq or |MVCy – CTRy| > THq, then the MVC is

skipped. For each 1/8 pixel MV candidate MVC, if |MVCx –

CTRx| > THe or |MVCy – CTRy| > THe, then the MVC is

skipped.

3.2. Efficient MVD representation

With the 1/4 pixel range and 1/8 pixel range described in

the previous section, actually there are three cases of MV

position:

 Inside the 1/8 pixel range (e.g. A in Fig. 4).

 Inside the 1/4 pixel range and outside the 1/8 pixel

range (e.g. B in Fig. 4).

 Outside the 1/4 pixel range (e.g. C in Fig. 4).

For the second and third case, 1/4 pixel accuracy and 1/2

pixel accuracy are enough for MV representation,

respectively. However, the original MVD which is directly

equal to MV minus MVP, has to be in 1/8 pixel accuracy

because the MVP may be in any position. Therefore, we use

a piecewise compression method to reduce the MVD value.

To be specific, for the first case of MV position, the MV is

kept unchanged; for the second case, the part of MV

exceeding 1/8 pixel range (limited by THe) is reduced to

half of its original size; otherwise the part of MV exceeding

1/8 pixel range and 1/4 pixel range (limited by THq) are

reduced to half and one fourth of its original size,

respectively. Then the MVD is equal to the difference

between the “new” MV and the MVP as before. The

detailed derivation method is provided as Algorithm 1

below. For example, the MVD value (MVDx, MVDy) of

typical position A, B and C in Fig. 4 before and after

conversion are listed in Table 2, with the MVP, MV, CTRe

and CTRq as input. By this means fewer bits are used for

MVD coding and no extra flag has to be signaled at block

level to indicate the MV resolution because the MV position

information is kept in MVD with piecewise method. After

that, the converted MVD is coded with CABAC in the same

way as HEVC.

Table 2. Example of MVD conversion (the top-left sample of the

current block is pointed out in Fig. 4)

MVP MV CTRe CTRq
Original

MVD

Proposed

MVD

A (9, 10) (10, 10) (8, 10) (8, 8) (1, 0) (1, 0)

B (9, 10) (12, 8) (8, 10) (8, 8) (3, -2) (2, -1)

C (9, 10) (16, 4) (8, 10) (8, 8) (7, -6) (3, -1)

Position

Input Ouput

Algorithm 1: MVD derivation at the encoder

Input : MV, MVP, CTRq, CTRe

Ouput : MVD

Begin

– If | MVx - CTRqx | > THq

– S = sign(MVx – CTRqx)

– MVDx = CTRex + S*THe

+ ((CTRqx + S*THq) – (CTRex + S*THe)) / 2

+ (MVx – (CTRqx + S*THq)) / 4 - MVPx

– MVDy = (MVy – CTRqy) / 4

– Elseif | MVy - CTRqy | > THq

– Similar to x component above

– Elseif | MVx - CTRex | > THe

– S = sign(MVx – CTRex)

– MVDx = CTRex + S*THe

+ (MVx – (CTRex + S*THe)) / 2 - MVPx

– MVDy = (MVy – CTRey) / 2

– Elseif | MVy - CTRey | > THe

– Similar to x component above

– Else

– MVDx = MVx – MVPx

– MVDy = MVy – MVPy

End

At the decoder, the MV is derived in reverse from the

formulas which are detailed in Algorithm 1, according to its

position. The MV position can be judged from the relation

between the MVD, MVP, THq and THe. The derivation

method is detailed in Algorithm 2, with the MVD, MVP,

CTRq and CTRe as input.

Algorithm 2: MV derivation at the decoder

Input : MVD, MVP, CTRq, CTRe

Ouput : MV

Begin

– CTRavgx = (CTRqx + CTRex) / 2

– CTRavgy = (CTRqy + CTRey) / 2

– THavg = (THq + THe) / 2

– TMVx = MVDx + MVPx

– TMVy = MVDy + MVPy

– If | TMVx - CTRavgx | > THavg

– S = sign(TMVx - CTRavgx)

– MVx = TMVx * 4

– (CTRex + S*THe) * 4

– ((CTRqx + S*THq) – (CTRex + S*THe)) * 2

+ (CTRqx + S*THq)

– MVy = MVDy * 4 + CTRqy

– Elseif | TMVy - CTRavgy | > THavg

– Similar to x component above

– Elseif | TMVx - CTRex | > THe

– S = sign(TMVx – CTRex)

– MVx = TMVx * 2- (CTRex + S*THe) * 2

+ (CTRex + S*THe)

– MVy = MVDy * 2 + CTRey

– Elseif | TMVy - CTRey | > THe

– Similar to x component above

– Else

– MVx = MVDx + MVPx

– MVy = MVDy + MVPy

End

3.3. Threshold selection

The values of the threshold THq and THe have a great effect

on the coding performance and complexity. The smaller the

threshold, the more MV positions can be skipped during

ME, thereby more time saving can be achieved at the

encoder and the distortion may get larger since the MV

accuracy get lower. Meanwhile, fewer coding bits are used

for MVD coding. The opposite result is got with the

threshold set larger. Experientially, THq = 4 and THe = 2

can achieve the best RD performance with almost the same

encoding and decoding time. While THq = 4 and THe = 0

can achieve both encoding time reduction and RD

performance improvement.

4. EXPERIMENTAL RESULTS

To verify the performance of the proposed PMVR method,

it has been implemented into HEVC reference software

HM8.0. Simulations are conducted for test sequences

PeopleOnStreet, Kimono, BasketballDrive, BasketballDrill,

BQMall, PartyScene, BQSquare and BlowingBubbles under

common test conditions defined in [8]. Two cases (THq,

THe) = (4, 2) and (THq, THe) = (4, 0) are tested and the

experimental results are shown in the following two tables.

From Table 3, it can be seen that for (THq, THe) = (4, 2)

case, proposed PMVR can provide 1.7%, 1,4% and 3.8%

BD-rate gain on average for RA-Main, LB-Main and LP-

Main respectively with almost the same time cost as HM8.0

Anchor. Specially, the maximum BD-rate gain is 16% for

sequence BQSquare. The reason is that BQsquare is a

sequence with a slow-moving shot far away and lots of

scenes of water wave, which needs high MV resolution (1/8

or higher) for slowly zooming and moving scene as well as

waving water. Therefore, PMVR with 1/8 pixel resolution is

particularly useful for full-view sequences with slow scene

moving because it can provide both more accurate motion

compensation and fewer MVD coding bits than HM8.0

Anchor.

Table 3. Performance of PMVR with (THq, THe)=(4, 2)

Y U V Y U V Y U V

PeopleOnStreet 0.0% -1.0% -0.7% 0.2% -1.0% -0.5% 0.6% -0.4% -0.2%

Kimono -0.3% -0.2% -0.5% 0.0% 0.3% -0.3% 0.0% 0.0% 0.0%

BasketballDrive -0.4% -1.1% -1.2% -0.3% -1.1% -1.0% -0.7% -1.3% -1.0%

BasketballDrill -1.7% -2.3% -2.0% -1.0% -5.3% -4.7% -1.4% -4.7% -3.9%

BQMall -0.9% -1.1% -1.0% -0.7% -1.1% -2.1% -2.3% -3.0% -2.7%

PartyScene -2.8% -3.1% -2.8% -1.9% -3.1% -3.4% -6.4% -6.4% -6.5%

BQSquare -6.2% -3.5% -5.0% -5.8% -4.5% -9.7% -16.0% -12.4% -17.8%

BlowingBubbles -1.7% -2.2% -2.6% -1.8% -3.4% -2.3% -4.3% -4.5% -5.1%

Average -1.7% -1.8% -2.0% -1.4% -2.4% -3.0% -3.8% -4.1% -4.7%

Enc Time [%]

Dec Time [%]

101% 97% 103%

100% 101% 101%

vs HM8.0 Anchor

Random Access main Low delay B main Low delay P main

As an extreme case with THe = 0, 1/8 pixel positions

are actually disabled in motion search, which keeps low

complexity for the encoder. However, 1/8 pixel MVs can

still be derived by MV scaling in skip or merge mode, and

thus coding performance can still be improved in this case.

From Table 4, it can be seen that for (THq, THe) = (4, 0)

case, it can provide 1.4%, 1.0% and 1.7% BD-rate gain on

average for RA-Main, LB-Main and LP-Main respectively

with around 9% encoding time reduction.

To further compare the proposed algorithm with the

Anchor, the Rate-Distortion performance curves of some

typical test sequences are shown in Fig. 5. It can be

intuitively seen that, PMVR achieves better R-D

performance than HM8.0.

Table 4. Performance of PMVR with (THq, THe)=(4, 0)

Y U V Y U V Y U V

PeopleOnStreet -0.7% -1.6% -1.4% -0.5% -1.2% -0.7% -0.5% -1.2% -0.7%

Kimono -0.8% -0.5% -0.5% -0.5% -0.2% -0.5% -0.1% -0.6% 0.1%

BasketballDrive -0.6% -1.0% -0.9% -0.5% -0.4% -0.4% -0.1% -0.3% -0.1%

BasketballDrill -1.2% -1.5% -1.2% -0.8% -2.1% -2.4% -0.2% -1.7% -1.3%

BQMall -0.8% -0.9% -0.7% -0.7% -0.6% -0.4% -1.0% -1.1% -0.7%

PartyScene -1.9% -2.0% -1.9% -1.1% -0.9% -0.7% -3.2% -2.5% -2.2%

BQSquare -3.7% -2.0% -2.6% -2.5% 1.2% -1.7% -6.1% -1.1% -5.3%

BlowingBubbles -1.4% -1.4% -1.4% -1.5% -0.7% 0.1% -2.7% -1.2% -1.0%

Average -1.4% -1.4% -1.3% -1.0% -0.6% -0.8% -1.7% -1.2% -1.4%

Enc Time [%]

Dec Time [%] 101% 101% 100%

vs HM8.0 Anchor

Random Access main Low delay B main Low delay P main

94% 88% 91%

Fig. 5. The rate-distortion curves of PMVR ((THq, THe)=(4,

2)) and the anchor

5. CONCLUSION

This paper proposes a progressive motion vector resolution

adaptation method for HEVC. The novelty of this scheme

lies in that we progressively adjust the MV resolution based

on the distance between the MV and MVP and restrict the

resolution ranges by simple thresholds. Moreover, a

piecewise MVD derivation method is applied to code MVD

efficiently. Experimental results show that PMVR can

achieve significant BD-rate gain with almost the same or

less time cost as HM8.0.

6. ACKNOWLEDGEMENT

This research is supported by the 863 program

(2012AA011505) and the National Science Foundation of

China (61121002, 61103088), which are gratefully

acknowledged.

7. REFERENCES

[1] B. Bross, W.-J. Han, J.-R. Ohm, G. J. Sullivan, and T.

Wiegand, “High efficiency video coding (HEVC) text

specification draft 8,” Joint Collaborative Team on Video

Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC

1/SC 29/WG 11, document JCTVC-J1003, Stockholm, Sweden,

July, 2012.

[2] Draft ITU-T Recommendation and Final Draft International

Standard of Joint Video Specification ITU-T Rec.

H.264/ISO/IEC 14996-10 AVC), Mar. 2003.

[3] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand,

“Overview of the High Efficiency Video Coding (HEVC)

Standard,” IEEE Trans. Circuits and Systems for Video Tech.,

this issue.

[4] P. Helle, S. Oudin, B. Bross, et al, “Block Merging for

Quadtree-Based Partitioning in HEVC”. IEEE Trans. Circuits

and Systems for Video Tech., 22(12): 1720-1731, Dec. 2012.

[5] M. Karczewicz, P. Chen, R. Joshi, X. Wang, W.-J. Chien, and

R. Panchal, “Video coding technology proposal by Qualcomm

Inc”, JCT-VC meeting contribution JCTVC-A121, Dresden,

DE, April, 2010.

[6] G. Laroche, J. Jung, B. Pesquet-Popescu, “RD Optimized

Coding for Motion Vector Predictor Selection”. IEEE Trans.

Circuits and Systems for Video Tech., 18(9): 1247-1257, Sept.

2008.

[7] K. McCann, W. -J. Han and I.-K. Kim, “Samsung’s Response

to the Call for Proposals on Video Compression Technology,”

JCTVC-A124, Dresden, Germany, April 2010.

[8] F. Bossen, “HM 8 Common Test Conditions and Software

Reference Configurations,” ITU-T SG16 Contribution,

JCTVC-J1100, Stockholm, July. 2012.

http://phenix.it-sudparis.eu/jct/doc_end_user/current_meeting.php?id_meeting=153&search_id_group=1&search_sub_group=1

