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a b s t r a c t

Search range (SR) is a key parameter on the search quality control for motion estimation
(ME) of a real-time video encoder. Dynamic search range (DSR) is a commonly employed
algorithm to reduce the computational complexity of ME in a video encoder. In this paper,
we model an effective predicted motion vector (PMV) deviation metric to predict the
relationship between SR and motion vector difference (MVD), according to the prediction
differences of both temporal and spatial motions of neighboring blocks. In addition, a
computation-constrained DSR (CDSR) control algorithm is proposed to manage the
computational complexity while maximizing video coding quality in a real-time compu-
tational constrained scenario. The SR is dynamically determined by three factors: motion
complexity, user-defined probability and computation budget. Compared to the conven-
tional DSR algorithms, the proposed CDSR is an effective and quantifiable algorithm to
allocate more computation budget to the blocks with high PMV deviations (such as
motion object boundary), and less computation budget to the well-matched motion
predicted blocks, while maintaining a constrained computation requirement. Experimen-
tal results show that the proposed CDSR control algorithm is an effective method to
manage the computation consumption of the DSR algorithm while keeping similar rate–
distortion (RD) performance. It can achieve about 0.1–0.3 dB average PSNR improvement
when the computation consumption is restricted to a specific level as compared with its
equivalent Fixed SR algorithm and can achieve about 50–90% computation savings when
compared to the benchmarks. For ME with high performance Processing Element (PE)
engine, the quality degradation caused by the proposed CDSR algorithm can be ignored.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

In the hybrid block-based video coding standards such as
ITU-T H.26x [1,2] and ISO/IEC MPEG-x series [3], motion
estimation (ME) plays a vital role in achieving high compres-
sion efficiency by removing temporal redundancy between
o. 5 Yiheyuan Road
910958581.
.edu.cn (H. Jia),
successive video frames. Motion estimation (ME) is defined
as the process of searching for an optimal motion vector
(MV) that represents displacement of coordinates of the best
matched block in a reference frame (past/future frame) for
the block in the current frame. Motion vector prediction that
predicts motion vectors by exploiting the correlation of MVs
between spatial or temporal neighboring blocks [4,5] is a
popular technique used in various video coding standards,
and the predicted motion vector (PMV) is often adopted as
the start point for many ME algorithms. For the window
based ME algorithms, an area in the reference frame within
the predefined search range around the start point (the

www.sciencedirect.com/science/journal/09235965
www.elsevier.com/locate/image
http://dx.doi.org/10.1016/j.image.2014.12.002
http://dx.doi.org/10.1016/j.image.2014.12.002
http://dx.doi.org/10.1016/j.image.2014.12.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.image.2014.12.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.image.2014.12.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.image.2014.12.002&domain=pdf
mailto:xhji@jdl.ac.cn
mailto:hzjia@pku.edu.cn
mailto:jliu@jdl.ac.cn
mailto:xdxie@pku.edu.cn
mailto:wgao@pku.edu.cn
http://dx.doi.org/10.1016/j.image.2014.12.002


X. Ji et al. / Signal Processing: Image Communication 31 (2015) 134–150 135
collocated block or the PMV) is defined as the search
window (SW). Then searches are conducted on the candi-
dates within a SW of a reference frame. The ME calculates
the matching costs of the candidates in the SW, and the
candidate with the smallest matching cost is the best match.
The most common criterion of the matching cost is the sum
of absolute differences (SAD) between pixels of the current
block and pixels of the reference candidate.

With the applications of more efficient coding techni-
ques and the increasing requirement of higher video
resolutions, the computation complexity of ME has been
dramatically increased. Studies have been done and shown
that more than 70% of the total encoding time and 90% of
the total memory access are dedicated to the ME process
[6]. Therefore, many fast algorithms have been proposed to
reduce the computational complexity of ME. Among all the
fast algorithms, search point reduction is a very straight-
forward and effective method [7] to accelerate the ME
process. For one category of those search point reducing
algorithms, such as the three-step search [8], the four-step
search [9], the diamond search [10] and the hexagon-
based search [11], search points reduction is achieved by
applying inherent search patterns. Although those fast
algorithms alleviate the problem of high computational
complexity, they are usually not hardware friendly and
suffer from the problems of performance degradation,
unpredictable memory access or irregular data flow, etc.
For the ME algorithms (full search, hierarchical search,
etc.) in which searching points are mainly determined by
the search window, SR reduction algorithms are another
way to reduce the computational complexity of ME.
Dynamic search range (DSR) algorithms have been pro-
posed by researchers [12–21] recently. The proposed DSR
algorithm dynamically adjusts the SR for each Macroblock
(MB) according to the information given by previously
encoded syntax element. Hong [12] proposed a DSR
algorithm using the motion vector (MV) information of
the adjacent and previously coded blocks. The predicted
SR of the current MB was determined by the magnitude of
the MVs of neighboring blocks. Xu [13] improved the
algorithm proposed in [12] to make it more suitable for
H.264/AVC [2]. Yamada [14] presented a two-stage SR
modification algorithm that limits the SR by the MVs of
neighboring blocks as well as the prediction error of the
corresponding block in the reference frame. Zhang [15]
determined the SR based on the frame complexity mea-
sured by the degree of motion activity at frame level.
Shimizus [16] utilized the information of variable block
size in H.264/AVC. He performed 16�16 mode or 8�8
mode at first and utilized the resulting motion vectors to
reduce the SR for large block modes. Song [17] evaluated
the relationship between SR and average MVs. The optimal
SR for the current MB was determined based on the
estimated average MVs and a pre-defined threshold. Ko
[18] and Dai [19] used different zero mean 2-D distribu-
tions to model the probability density function (PDF) of
MVD and the neighboring MVD information was adopted
to estimate the distribution of the current MVD which
determines the optimal SR. Lou [20] proposed a DSR
algorithm by using both spatial and temporal MVPs as
parameters to adaptively select the SR. Afterwards, the
algorithm was further improved in [21] by using the
variance of the MVP set which has been proved to be
highly correlated with the SR value.

However, most of the previous works focus on the
reduction of the SR while keeping similar rate–distortion
(RD) performance, ignoring the constraints of implemen-
tation. In real-time video application, ME is mostly imple-
mented as a dedicated hardware accelerator [22–24] in
which processing is guaranteed to finish within strict time
constraint to permit search for the best matching block. To
achieve the highest degree of parallelism, pipelined archi-
tectures [25,26] are the most commonly used techniques
for hardware accelerators. The pipeline is designed to
maximize the system throughput while satisfying latency
and resource constraints. In addition, in order to improve
the pipeline performance, all the pipeline stages are
expected to have a similar processing time. For a fixed
time budget, searching through a larger SW usually
requires a high level of parallelism and results in large
silicon area consumption for the ME stage. Furthermore,
the DSR algorithms usually give an unrestricted dynamic
SR for each MB which leads to a large variation of the
processing time for ME. The computing resources required
to guarantee real-time processing must be significantly
increased with the search range and frame size to an
unacceptable degree. Meanwhile, it is difficult to estimate
the scale of computing resources for the DSR ME accel-
erator in order to guarantee the real-time processing of the
system. For this reason, the dynamic SR that leads to an
unpredictable computing requirement for ME in conven-
tional DSR algorithms is not desirable for the hardware
implementation. Hence, practical hardware-friendly DSR
algorithm should not only consider the trade-off between
the SR reduction and RD performance, but also its implica-
tions on hardware implementation.

In this paper, in order to overcome the problems of the
conventional DSR algorithms, we propose an effective
PMV deviation metric to model the distribution of the
relationship between SR and MVD according to the pre-
diction differences of both temporal and spatial neighbor-
ing motions. Furthermore, a computation-constrained DSR
control algorithm is proposed to manage the computa-
tional complexity while maximizing video coding quality
in a real-time computational constrained scenario. The SR
is determined by three factors: motion complexity, user-
defined probability (the probability of the optimal MV to
fall into the desired window) and computation budget.
The computation-constrained DSR control algorithm can
be easily adapted to industrial products of real-time video
encoders, such as live TV broadcasting, video telephone,
particularly the VLSI based solution.

The remainder of this paper is organized as follows. The
proposed Dynamic Search Range (DSR) prediction algo-
rithm is presented in Section 2. In addition, a novel PMV
deviation metric is introduced to model the distribution of
the relationship between SR and MVD. In Section 3, the
computation-constrained DSR control algorithm is pre-
sented. Experimental results of comparisons with the
traditional non-constrained DSR algorithms are shown
in Section 4. Finally, some concluding remarks are given
in Section 5.
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Fig. 1. Spatial neighborhood for current block.
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2. Dynamic search range prediction

2.1. Modeling distribution of SR and MVD

In video sequences, motion vectors of the neighboring
partitions are often highly correlated and each motion
vector is predicted from vectors of nearby and previously
coded partitions. PMV is derived based on previously
calculated motion vectors. For the window based ME
algorithms, searching is performed within a SW to find
an optimal MV that gives the minimal pixel differences.
The difference between the optimal MV and the predicted
vector (MVD) is encoded and transmitted. The MVD
distribution within a frame has been investigated [27,28],
and zero mean Cauchy distribution with the scale para-
meter γ, having the 1-D probability density function (PDF)

f xð Þ ¼ 1

πγ 1þ x=γ
� �2h i; xAR ð1Þ

has been proven to be a better fit to the MVD distribution
than the Laplacian or Gaussian distribution [19]. Here γ is a
scale parameter which depends on the picture content.
The assumption is that the x and y are independent Cauchy
random variables for horizontal and vertical directions of
MVD respectively with scale parameter of γ and zero
mean. The 2-D joint PDF can be written as:

f x; yð Þ ¼ 1

π2γ2 1þ x=γ
� �2h i

1þ y=γ
� �2h i; x; yAR ð2Þ

Let

Λ Sx; Sy; γ
� �¼ f xj jrSx; y

�� ��rSy
� �

¼
Z Sy

� Sy

Z Sx

�Sx
f x; yð Þdxdy

¼ 4
π2

tan �1 Sx
γ

� �
tan �1 Sy

γ

� �
ð3Þ

Here Λ is the probability of the optimal MV falling into
the search window. Sx and Sy are the half ranges of the
search window centered at the PMV in horizontal and
vertical directions, respectively.

Let assume that a square search window is adopted for
motion search. Let Sx ¼ Sy ¼ S, Eq. (3) can be simplified to

Λ S; γð Þ ¼ 4
π2

tan �1 S
γ

� �� �2
ð4Þ

then

S Λ; γð Þ ¼ γ � tan
π

ffiffiffi
Λ

p

2

� �
ð5Þ

Therefore, given a model parameter γ, the optimal
search range S with hitting probability Λ can be predicted
by Eq. (5).
2.2. The proposed dynamic search range prediction
algorithm

The SR can be modeled by Cauchy parameter γ and
hitting probability Λ. If we can get a precise estimation of γ,
the optimal SR for each search block with hitting prob-
ability Λ can be accurately predicted. As the Cauchy
parameter γ determines the shape of the MVD distribution,
its estimation γ is highly dependent on the accuracy of the
MVP. If the MVP is accurate, the difference between the
MVP and the optimal MV is small, which indicates a
sharper MVD distribution. In order to get a precise
estimation of γ for the MVD distribution, the confidence
of the PMV for each searching block should be evaluated.
As motion vector prediction is performed on the basis of
the highly correlated motions, the prediction accuracy of
PMV is determined by the prediction differences of tem-
poral/spatial neighboring motion vectors. To model the
deviation of the PMV, the concept of temporal and spatial
motion prediction difference is introduced here.

As is shown in Fig. 1, block A, B, C and D are the
neighborhood blocks in a current frame. Let assume that
motion vectors of A, B, C and D are MV1, MV2, MV3 and
MV4. Furthermore, the motion vector of each neighboring
block is normalized according to its temporal distance:

MVn
i ¼ Sign MVið Þ

� MVij j � Distcur �
512
Disti

� �
þ256

� �
c9

� �
ð6Þ

where Dist is the temporal distance between current and
reference frame in display order represented by number of
frames. Distcur and Disti are the temporal distances for the
current and neighboring blocks, respectively.

Then the spatial motion prediction difference δs can be
calculated as

δs ¼
XN�1

i ¼ 0

ωi � MVXn
i �PMVX

�� ��þ MVYn
i �PMVY

�� ��� �
 � ð7Þ

where N is the number of spatially available neighboring
blocks. MVXn

i and MVYn
i are horizontal and vertical com-

ponents of MVn
i , respectively. PMVX and PMVY are motion

vector components of PMV for the current block. ωi is the
weighting factor based upon the relative distance between
the current block and its neighbor blocks.

To measure the temporal motion prediction difference,
the temporal neighboring window and temporal motion
vectors are introduced in this section. As shown in Fig. 2,



Fig. 2. Temporal neighborhood for current block.

X. Ji et al. / Signal Processing: Image Communication 31 (2015) 134–150 137
the temporal neighboring window is the surrounding area
centered by the reference block across multiple reference
frames in time, temporal motion vectors MV

n
are the

average of normalized motion vectors in a temporal
neighboring window in space, and the temporal neighbor-
ing windows in different reference frames are predicted by
the PMVs of the current block. Then the temporal motion
prediction difference δt for current search block in ith
frame can be calculated as

δt ¼
Xi�M

j ¼ i�1

τj � MVX
n
j �PMVXj�1

��� ���þ MVY
n
j �PMVYj�1

��� ���� 
h i
ð8Þ

where M is the number of available temporal neighboring
windows. MVX

n
j and MVY

n
j are horizontal and vertical

components of normalized temporal motion vectors in the
jth reference frame. PMVXj�1 and PMVYj�1 are motion
vector components of derived PMV for the j�1ð Þth refer-
ence frame. The weighting factor τj is adjusted according
to the time distance between reference frame and current
frame. The temporal motion prediction difference δt repre-
sents the deviation of the predicted motion vector from a
temporal neighboring window across multiple frames, and
a small δt implies that the current block is either stationary
in motion (e.g. scene background) or an internal part of a
solid object (foreground).

Therefore, the PMV deviation metric θ is proposed
according to the prediction differences of temporal and
spatial neighboring motions and is given as

θ¼ δsþδtþδK
NþMþK

ð9Þ

where δs and δt are the spatial and temporal motion
prediction differences, respectively. N and M are the
numbers of spatially and temporally available motion
vectors, respectively. A prior-belief bayesian factor δK is
adopted to model the few/zero available neighboring
blocks that often occur at the sequence/frame boundary.
K is the number of introduced “pseudo” neighboring
blocks (extrapolated frame or boundary). δ is defined as
the average prediction difference of the previously coded
blocks and is calculated as

δ ¼
XNmbprev

i ¼ 1

δs ið Þþδt ið Þ
N ið ÞþM ið Þ

� �
=Nmbprev ð10Þ

with δ ¼ 1, for the beginning of a sequence, where Nmbprev is
the number of previously motion-estimated blocks. δ is
updated after the processing of each block. PMV deviation θ
can be used to indicate the SR requirement of ME. If motion
vectors are highly correlated in space and time, the esti-
mated block will behave as a low PMV deviation which
leads to a small SR for ME.

To model the relationship between PMV deviation θ
and Cauchy parameter γ, over 60 sequences varying from
CIF to 1080P are statistically analyzed. These sequences are
coded by a H.264/AVC encoder (JM18.4) using full search
(FS). IPPP picture structure, block size of 16, 2 reference
frames and SAD as the cost function are used. By consider-
ing the balance between searching efficiency and coding
performance, the SR is set to 32 for all sequences. We
calculate the statistics from these data, including θ and the
optimal MVDs. The MVDs are categorized on the basis of
PMV deviation θ. The hypothesized Probability Density
Function (PDF) for each MVD cluster is estimated by the
method in [29]. A well-known 2-D KS test [30] is adopted
to justify the correctness of hypothesized MVD PDFs. The
statistic defined in Eq. (11) is used as the measure of
similarity between the hypothesized PDF (the modeled
MVDs) and the observed PDF (measured MVDs).

D¼ max CDFmodeled sð Þ�CDFmeasured sð Þ
�� ��� �

; sA �SR; SRð Þ
ð11Þ

Here CDFmodeled and CDFmeasured are cumulative PDFs of
the model and the measured MVDs, respectively. SR is the
size of the SW. Four representative θ values which are
selected to cover the common range of PMV deviation are
used for the 2-D KS test. The detailed 2-D KS test results on
some representative sequences are shown in Table 1. For
most of the tested sequences, the 2-D KS test usually has a
small statistic D (0.01–0.20) and it implies that the
hypothesized PDF matches well with the observed PDF.

PDFs for MVD distributions with different PMV devia-
tions are shown in Fig. 3(a). We can find that the MVD



Table 1
Statistic of 2-D KS test on some representative sequencesa.

Sequences Number of frames θ¼ 0:2 θ¼ 1:4 θ¼ 4:0 θ¼ 8:0

λ̂ Db
λ̂ D λ̂ D λ̂ D

Foreman (CIF) 300 0.10 0.10 0.12 0.11 1.41 0.16 1.84 0.18
Stefan (CIF) 300 0.23 0.20 0.30 0.21 1.74 0.16 2.52 0.14
Coastguard (CIF) 300 0.02 0.15 0.04 0.09 1.29 0.09 N/A N/A
City (720P) 300 0.02 0.05 0.03 0.04 0.58 0.17 1.55 0.15
Night (720P) 300 0.12 0.18 0.19 0.22 1.79 0.17 3.77 0.13
Spincalendar (720P) 60 0.11 0.14 0.18 0.19 1.28 0.18 2.32 0.14
BasketballDrive (1080P) 80 0.25 0.19 0.28 0.20 1.65 0.16 2.87 0.12
BlueSky (1080P) 80 0.07 0.04 0.07 0.04 0.6 0.20 0.90 0.18
ChristmasTree (1080P) 80 0.07 0.01 0.08 0.02 1.50 0.11 3.88 0.07
BQTerrace (1080P) 80 0.08 0.04 0.09 0.06 0.53 0.21 1.45 0.20
…

Averagec 0.07 0.08 0.10 0.12 1.30 0.14 2.37 0.09

a Only ten representative sequences are shown here.
b SR is set as 32.
c The averages are for the whole set of 60 tested frames.
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Fig. 3. (a) Probability density functions for MVD distributions with different PMV deviations. (b) Relationship between Cauchy parameter and PMV
deviation.
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distribution becomes flat with the increase of θ. Fig. 3(b)
shows the relationship between Cauchy parameter and
PMV deviation. The accuracy of PMV predicted by the
motion vector prediction algorithm will increase with the
increase of the motion correlation. However, the PMV is
roughly estimated by using the motion vectors of the
neighboring blocks. It is difficult to get an accurate PMV
with high pixel precision (e.g. fractional pixel accuracy).
Better prediction accuracy cannot be achieved with the
decrease of the PMV deviation for the PMV at a specific
pixel threshold (actually 1.5 pixel). The value of θ has little
effect on the distribution of MVD and the Cauchy para-
meter γ keeps a constant value when θo1:5 (integer pixel
corner), and when θZ1:5, the value of the Cauchy
parameter γ grows linearly with the increase of PMV
deviation θ. Hence, Cauchy parameter γ can be modeled
as a piecewise function of the PMV deviation θ in the
following form:

γ θð Þ ¼
c ; θo1:5;
ξ1θþξ2 ; θZ1:5

(
ð12Þ

where c is a constant value. ξ1 and ξ2 are two coefficients
of linear model. Regression is done by using the statistics
of all tested sequences and the initial value of ξ1, ξ2 and c
with the least regression error set to 0.3, 0.1 and 0.1,
respectively. Therefore we can obtain the formulated
relationship among search range S, hitting probability Λ
and the estimated PMV deviation θ by substituting Eq. (12)
into Eqs. (4) and (5):

Λ S; θð Þ ¼ 4
π2

tan �1 S
γ θð Þ

� �� �2

ð13Þ
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and

S Λ; θð Þ ¼ γ θð Þ � tan
π

ffiffiffi
Λ

p

2

� �
ð14Þ

Fig. 4 shows the relationship between search range S,
hitting probability Λ and PMV deviation θ. We can see that
the predicted search range varies greatly for different PMV
deviations with a certain hitting probability, and very
small search range is required for the blocks with low
PMV deviations which are the majority in the video
sequences. Therefore, by considering the PMV deviations
and hitting probability, the search ranges for the motion
estimated blocks can be dynamically predicted and the
consequent complexity for the motion estimation can be
dramatically decreased.

3. Computation-constrained DSR control

Since SR for motion estimation can be dynamically
predicted by using the proposed DSR algorithm, the SR
varies with the PMV deviation for each block. The variable
SR usually implies different computing requirements for
ME that may lead to a large variation in processing time.
The unpredictable processing time for the DSR causes
great limitation for real-time video applications where
processing is desired to finish within strict time constraint.
In this Section, the computation-constrained DSR control
algorithm depending on the PMV deviation is proposed to
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100
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300

Fig. 4. Relationship among search range, hitting probability and PMV
deviation.

FramekFramek-2

Fig. 5. Definition of basic p
manage the computational complexity while maximizing
video coding quality in a real-time computational con-
strained scenario.

3.1. Basic concept and models

3.1.1. Basic processing unit
Practical hardware architectures for real-time video

applications [25,26] are often designed to work using a
specific parallel granularity (typically MB level, slice level
or frame level). To guarantee real-time processing, video
processing algorithms are partitioned into several tasks
and mapped into a specific parallel structure based on
their computing requirements. In order to model the
parallel granularity adopted in implementation, we intro-
duce the concept of basic processing unit. Suppose that a
frame is composed of Nmbpic MBs. A basic processing unit
(BPU) is defined to be a group of contiguous MBs which
is composed of Nmbunit MBs where Nmbunit is a fraction
of Nmbpic. The number of BPUs in one frame Nunit can be
given by:

Nunit ¼
Nmbpic

Nmbunit
ð15Þ

Basic processing unit can be a MB, a slice, or a frame.
Computing resources are shared among all MBs in the
same BPU. The BPUs in video sequence are illustrated in
Fig. 5.

3.1.2. Motion estimation computation model
A typical motion estimation implementation usually

has a limited computing capability for practical video
applications. We can approximately model the computa-
tion capacity according to its implementation platform
(CPU, DSP, ASIC etc.). Suppose computation budget T
represents the computing capability (e.g. fixed number of
instructions) that the computational core can provide per
unit time. For software implementation T can be defined
as follows:

T � α� DMIPS ð16Þ
DMIPS is dhrystone million instructions executed per second,
and it represents the performance of a general-purpose
processor (CPU). Parameter α is the proportion of the
computational complexity of the ME task in the whole
system. T denotes the number of instructions that the CPU
Framek-1

rocessing unit (BPU).



Table 2
Computational complexity model of commonly used ME algorithms.

Motion estimation algorithms Computational complexity model

Full search (FS) Ψ FS Sð Þ �MBsize � 4S2 � ε1þε2
Three step search (TSS)

ΨTSS Sð Þ � P16�16

mode ¼ 8�8
MBsize � 16S 1� 1

2

� � logS2 þ1
� �� �

� ε1

� �
þε2

Multi-resolutions (MMEA) ΨMMEA Sð Þ �MBsize � S2
64þ4S2L1þ4S2L0

� 

� ε1þε2
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can provide for the ME task per unit time. For the VLSI
implementation T can be given by:

T � Freq� NPE ð17Þ
where Freq is the system clock frequency. NPE is the number
of processing elements (PE) in the ME architecture. Suppose
the input video sequence has the frame rate of R frames
per second. The computation budget Tpic for performing ME
for one frame can be given by:

Tpic ¼
T

R� Nref
ð18Þ

where Nref is the number of reference frames. As the parallel
granularity for the ME architecture is in the unit of BPU, the
computation budget can only be shared within one BPU and
this cannot be shared among different BPUs. Assume that
each BPU in one frame has the same size and the time
consumption switching between BPUs is ignored. Then, the
computation budget Tunit for each BPU is obtained as follows:

Tunit ¼
Nmbunit � Tpic

Nmbpic
ð19Þ

For the ME algorithms in which searching points are
mainly determined by the search window, the computa-
tional complexity is strongly related to the SR. We for-
mulate the computational complexity of commonly used
ME algorithms as a function of SR and we list the results in
Table 2, where S is the search range adopted in the specific
ME. MBsize is the number of pixels in a MB with typical
value of 16�16. ε1 denotes the average computation
budget consumption (number of instructions or clock
cycles) per pixel. ε2 is the computing overhead of data
preparation (original and reference pixels fetch, search
window load and pipeline setup, etc.) and finishing
(motion vectors and costs output, etc.). Therefore, the
computation budget constraint for ME can be given as

XNmbunit

j ¼ 1

Ψ Si;j kð Þ
 �
rTunit ð20Þ

where Si;j kð Þ is the search range for the ith MB in the jth
BPU in the kth frame. Ψ is the computational complexity
model for the adopted ME algorithm. To guarantee real-
time processing, the computing requirement of ME for
each BPU should be no larger than Tunit .

3.2. Proposed computation-constrained DSR control
algorithm

Since computation capacity is limited for the real-time ap-
plications, the goal of our proposed computation-constrained
DSR control algorithm is to minimize the overall performance
degradation for ME within the constraints of the given
computing resources. The problem is formulated as follows.

Let S ¼ 1;2;…;1024f g be the set of search range values
for motion estimation in a video encoder. Find
sn ¼ S1;j kð Þ;…; SNmbunit ;j kð Þ� �T , with Si;j kð ÞAS for i¼ 1;2;…;

Nmbunit , where Nmbunit is the total number of MBs in the
BPU, such that the hitting probability degradation with
limited computation capability is minimized, i.e.

sn ¼ arg min
S1;j kð Þ;…;SNmbunit ;j

kð Þ
� � XNmbunit

i ¼ 1

Λ Si;j kð Þ; θi

 ��ΛTH

�� �� ð21Þ

subject to the constraints

XNmbunit

i ¼ 1

Ψ Si;j kð Þ
 �
rTunit

Si;j kð Þrγ θi;j
� �� tan 2

ffiffiffiffiffiffi
ΛTH

p
π

� 

8>>><
>>>:
where Λ Si;j kð Þ; θi


 �
is the hitting probability for the ith MB

in the jth BPU in the kth frame with search range Si;j kð Þ and
PMV deviation θi;j. ΛTH is the user defined hitting prob-
ability threshold which determines the performance of ME
and Tunit is the computation budget for the current BPU.
The formulated global optimization is to find a set of
search ranges sn by minimizing the overall hitting prob-
ability degradation (the highest coding efficiency) for the
whole BPU. Two types of constraints are defined in Eq. (21)
for global optimization:
(1)
 The real time constraint: not using more than the
available computation budget for that BPU to guaran-
tee overall real time operation.
(2)
 The performance constraint: the SR should be less
than the derived user-defined threshold to guarantee
the desired or better optimal MV hitting probability.
For real-time applications, it is impossible to obtain the
global optimal solution to Eq. (21), due to the unavailability
of future block information. However, it is possible to get a
suboptimal solution based on the available information of
the previously encoded blocks. Particularly, instead of expli-
citly minimizing the hitting probability degradation among
the MBs, we address this problem by exploring a global
computation budget allocation model developed to charac-
terize the relationship between the allocated computation
budget and the proposed PMV deviations.

The basic idea of our proposed computation-constrained
DSR control algorithm is to develop an effective and quanti-
fiable way to allocate more computation budget to the blocks
with high PMV deviations (such as moving object boundary),
and less computation budget to the well-matched motion
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Fig. 6. Comparison of predicted and actual mean square of PMV deviations. (a) BasketballDrive with Nmbunit ¼ 120. (b) BasketballDrive with Nmbunit ¼ 720.
(c) BasketballDrive with Nmbunit ¼ 4080. (d) BasketballDrive with Nmbunit ¼ 8160.
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predicted blocks (internal MB of a moving object or the
background), meanwhile maintaining a limited computing
requirement, such that real-time processing is guaranteed.

3.2.1. A linear model for computational complexity
prediction

Based on the computational complexity model given in
Table 2, for most of the ME algorithms, the computational
complexity Ψ is approximately proportional to the square
of the search range. Moreover, as discussed in Section 2,
the predicted search range is proportional to the PMV dev-
iation according to Eqs. (12) and (14). Hence, we can derive
that, the computational complexity Ψ is approximately
proportional to the square of the PMV deviation θ.

ΨpS2pθ2 ð22Þ
Let Θj kð Þ be the mean square of the PMV deviations

θn;j kð Þ of the jth BPU in the kth frame. Then, it can be easily
derived that

XNmbunit

i ¼ 1

Ψ Si;j kð Þ
 �
=Nmbunit pΘj kð Þ ð23Þ

where

Θj kð Þ ¼
XNmbunit

i ¼ 1

θ2i;j kð Þ=Nmbunit

Since computation budget consumption is directly
related to the computational complexity, to optimally
allocate the computation budget for each MB, the compu-
tational complexity should be first accurately determined
by using the θ2 of the current MB and the Θ of the whole
BPU. However, the mean square of PMV deviations Θ for
the current BPU is only available after processing the last
MB in the BPU. It is known that motion usually behaves
with high correlation between successive video frames. It
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is possible to predict the Θ of the whole BPU from its
neighboring frames. If some information that can be used
for predicting Θ could be collected in previously coded
frames, then the problem could be solved. According to the
above analysis, a simple linear prediction model is pro-
posed to predict the mean square of the PMV deviations
for the current BPU:

Θ̂j kð Þ ¼ λ1Θj k�1ð Þþλ2 ð24Þ

where Θj k�1ð Þ denotes the actual mean square of the PMV
deviation of the jth BPU in the k�1ð Þth frame and Θ̂j kð Þ
denotes the predicted mean square of the PMV deviations
of the jth BPU in the current kth frame. λ1 and λ2 are two
coefficients of the linear prediction model. The initial value
of λ1 and λ2 are set to 1 and 0, respectively. They are
updated after the processing of every BPU.

Fig. 6 shows the comparison of predicted and actual
mean square of the PMV deviations for different sizes of
BPU, for which I frames are excluded. We can see that the
proposed linear prediction model with different sizes of
BPU basically follows the trend of the actual curve,
especially for frames with consistent motions. Although
the linear prediction model could efficiently predict the
actual change of Θ, for some sequences with fine texture
details or irregular motion, this linear prediction model
may not work as expected. However, it should be noted
that the proposed linear prediction is just one Θj kð Þ
prediction method. There are many other more accurate
choices for the Θj kð Þ prediction. For example, look-ahead
pre-processors that can collect the motion and texture
information for the current frame before the coding
process have been integrated into many practical video
encoders recently [31,32]. A set of rough motion informa-
tion for the current BPU can be obtained before DSR, and
those rough motion vectors can be used for the current
Θj kð Þ prediction.
3.2.2. Computation-constrained DSR control
To perform optimized computation budget allocation

among MBs in a BPU, a computation budget tracking model
based on the concept of BPU and ME computation model is
proposed. Let Ti;j kð Þ denote the number of remaining
computation budget for the remaining Nmbunit� ið Þ MBs in
the jth BPU, and is computed as

Tiþ1;j kð Þ ¼ Ti;j kð Þ�ti;j kð Þ ð25Þ

with

T1;j kð Þ ¼ Tunit

where ti;j kð Þ is the actual computation consumption for the
ith MB in the jth BPU, and Tunit is the total computation
budget for the current BPU.

Using the proposed computation budget tracking
model (Eq. (25)) and the relationship between computa-
tional complexity and PMV deviation (Eq. (22)), the
computation budget t̂i;j kð Þ allocated for the ith MB in the
jth BPU are determined based on the square of PMV
deviations, the average computational complexity and
the available remaining computation budget, and can be
calculated by

t̂i;j kð Þ ¼ min
θ2i;j kð Þ
~Γ i;j kð Þ �

Ti;j kð Þ
Nmbunit� i

; Ti;j kð Þ
( )

ð26Þ

In the above equation, ~Γ i;j kð Þ is the average computa-
tional complexity for the remaining MBs in the jth BPU. It
is computed as follows:

~Γ iþ1;j kð Þ ¼ ~Γ i;j kð Þ� min
θ2i;j kð Þ�Θ̂j kð Þ

Nmbunit
; ~Γ i;j kð ÞþΔ

( )
ð27Þ

with

~Γ1;j kð Þ ¼ Θ̂j kð Þ
where Θ̂j kð Þ is the mean square of the PMV deviations
predicted by the proposed linear prediction model (Eq. (24)),
θ2i;j kð Þ is the square of PMV deviation for the ith MB in the jth
BPU and Δ is a constant value introduced to avoid the model
underflow, with a typical value of 1.

Depending on the allocated computation budget, the
constraint for the computing resources can be given by

ε2rΨ Si;j kð Þ
 �
r t̂i;j kð Þ ð28Þ

Si;j kð Þ is the search range of ME for the ith MB in the jth
BPU. ε2 is the computing overhead of the ME core, and it is
introduced to improve the searching efficiency.

Therefore, to maintain a bounded computing require-
ment for the DSR algorithm, the computation budget
allocation is implemented by restricting the search range
Si;j kð Þ determined by Eq. (14) for each MB, i.e.

Si;j kð Þ ¼ min max Ψ �1 ε2½ �; γ θi;j kð Þ
 ���
� tan

π
ffiffiffiffiffiffiffiffi
ΛTH

p

2

� ��
;Ψ �1 t̂i;j kð Þ
 �g ð29Þ

where θi;j kð Þ and ΛTH are the PMV deviation and user
defined hitting probability threshold for the current MB.
γ θi;j kð Þ
 �� tan π

ffiffiffiffiffiffiffiffi
ΛTH

p
=2

� �
is the dynamic search range

predicted by the proposed DSR algorithm, respectively.
Ψ �1 t̂i;j kð Þ
 �

is the maximum search range for the ME
engine with the allocated computation budget t̂i;j kð Þ, and
it is adopted as the upper bound for the predicted search
range to guarantee real-time processing. Ψ �1 ε2½ � is set as
the lower bound for the CDSR to improve the searching
efficiency.

Since silicon area, memory bandwidth, data depen-
dency and power consumption are four key factors for
VLSI implementation, we evaluate the implementation
complexity of our CDSR algorithm from four aspects:
(1)
 Silicon area. As is described in Sections 2 and 3, we
can find that both θi;j kð Þ and t̂i;j kð Þ behave with a
limited value range. Therefore, for the hardw-
are implementation, the results of γ θi;j kð Þ
 �� tan
π

ffiffiffiffiffiffiffiffi
ΛTH

p
=2

� �
and Ψ �1 t̂i;j kð Þ
 �

can be kept on a pre-
defined lookup table that can be stored on an on-
chip RAM and 512 bytes are enough for the
approximation precision. The lookup table can be
configured by the micro control unit (MCU) at the
beginning, and it will be updated after the chan-
ging of model parameters (ΛTH , ξ1 and ξ2). Moreover,



Table 3
The proposed computation-constrained DSR control algorithm.

Step 1: If it is the first inter frame or scene change frame in a sequence, initializing coefficients of the Cauchy parameter estimation model
(ξ1 ¼ 0:3, ξ2 ¼ 0:1, c¼ 0:1) and linear PMV deviation prediction model (λ1 ¼ 1,λ2 ¼ 0), set the value of the average prediction difference δ to
1

Step 2: Getting the total computation budget Tunit ¼ Nmbunit � Tpic
� �

=Nmbpic and user defined hitting probability threshold ΛTH for the current BPU
Step 3: Predict computational complexity Θ̂j kð Þ based on the linear prediction model and complexity of co-located BPU in the previous frame for

the current BPU
Step 4: Predicting the search range for the current MB in BPU. Step 4 is composed of the following 4 sub-steps
Step 4.1: Normalize the motion vectors ðMViÞ of neighboring blocks. Calculate the spatial motion prediction difference δs and temporal motion

prediction difference δt by Eqs. (7) and (8), respectively. Compute the PMV deviation θi;j kð Þ for the current MB by Eq. (9)
Step 4.2: If it is the first MB in the BPU, initialize the remaining computation budget T1;j kð Þ ¼ Tunit and the average computational complexity

~Γ1;j kð Þ ¼ Θ̂j kð Þ; else, updating the remaining computation budget Ti;j kð Þ and computational complexity ~Γ i;j kð Þ by Eqs. (25) and (27)
Step 4.3: Calculate the allocated computation budget t̂i;j kð Þ by Eq. (26). Get the lower and upper bounds for the predicted search range
Step 4.4: Compute the predicted search range Si;j kð Þ with the hitting probability threshold ΛTH by Eq. (14), and to maintain a limited computing

requirement for current BPU, Si;j kð Þ is clipped within the bound Ψ �1 ε2½ �;Ψ �1 t̂i;j kð Þ
 �
according Eq. (29)

Step 5: Perform ME with the predicted search range Si;j kð Þ obtained in Step 4. Update the actual computation consumption ti;j kð Þ for the current

MB and the average prediction difference δ . If the last MB of current BPU is reached, go to Step 6; else, go to Step 4
Step 6: Update the Cauchy parameter estimation model parameters (ξ1 and ξ2) and linear PMV deviation prediction model parameters (λ1 and λ2)

based on the actual computational complexity Θj kð Þ and statistics of the optimal motion vectors. If it is the last BPU in the frame, go to Step
7; else, go to Step 2

Step 7: If the sequence ends, terminate the procedure; else, go to Step 1
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it is worth noting that Ψ �1 ε2½ � is a constant value for
a specific ME implementation, and no extra circuits
will be involved for Ψ �1 ε2½ �. After the calculation of
θi;j kð Þ and t̂i;j kð Þ, the predicted computation-
constrained search range Si;j kð Þ can be quickly calcu-
lated by querying the predefined on-chip lookup
table. In addition, the linear computational complex-
ity prediction can be divided into two parts handled
by the hardware and software, respectively. The
values of θ2 are accumulated for each BPU by the
hardware circuit. The accumulations will be read
back by the MCU at the end of the frame and the
linear prediction defined by Eq. (24) for each BPU
can be calculated by the software. Hence, little
silicon area overhead will be introduced for the
implementation of our proposed CDSR algorithm.
(2)
 Memory bandwidth. Neighboring motion vectors
needed for the calculation of the PMV deviation in
the CDSR algorithm are the main contributing factors
for the increase of system memory bandwidth. The
spatial motion prediction difference δs is calculated
from the motion vectors of spatially neighboring
blocks. To reduce the bandwidth requirement, those
spatially neighboring motion vectors can be stored on
a line buffer. Assume that an integer motion vector
occupies 20 b (10 b per component) in the memory.
Then for 1080P@30fps video encoder, the size of the
line buffer in the CDSR ME is ð1920=16 MBs� 4
blocksþ4 blocksÞ � 20 b¼ 1210 B. Furthermore,
those spatially neighboring motion vectors are the
same as the vectors used in the MVP algorithm.
Hence, the line buffer that stores the spatially neigh-
boring motion vectors in the CDSR ME can be shared
with the MVP module. Temporal neighboring win-
dows that are used to calculate the temporal motion
prediction difference δt can be loaded from external
memory. Assume that the CSDR with a maximum of
two temporal neighboring windows are adopted in
the design. The memory bandwidth required for
loading the temporal neighboring windows is 2�
9 blocks� 20 b� 8160 MBs� 30 fps¼ 10 MBps.
DDR2 is a commonly used external memory in VLSI
design. It can provide highmemory bandwidth, but in
practice, the bandwidth utilization is low due to the
random-access nature and read-modify-write depen-
dencies of an application. According to the data given
in the previous work [33], 80% is adopted as the DDR2
bandwidth utilization efficiency on average. For the
64-bit DDR2 working at 300MHz, it can offer the
average bandwidth of 3840 MBps. The extra external
memory bandwidth requirement of the proposed
CDSR is just 0.3% of the total system bandwidth. In
addition, the bandwidth for loading the SW from the
external memory is also a critical issue for the ASIC
implementation when using a dynamic search range.
To solve the bandwidth problem, the data reuse
scheme should be specially designed for the DSR
ME engine. The external memory bandwidth for the
DSR ME engine can be reduced by applying some
irregular data reuse schemes, such as cache based
data reuse [34]. Meanwhile, bandwidth can also be
reduced by maintaining a large SW in the ME engine
and the reference pixels used by the processing
element (PE) in DSR ME can be read directly from
the large SW. The large SW can be updated by the
traditional data reuse schemes, such as level C [35],
level Cþ [36], etc.
(3)
 Data dependency. The calculation of spatial motion
prediction difference δs for the current MB is
dependent on the final MVs of its spatial neighbor-
ing blocks which are not available until the optimal
MB mode is determined and it involves some
additional data dependencies in the ME process.
The constraint of data dependency brought by the
CDSR can be eliminated by some hardware oriented
modifications (zigzag scan, data approximation, etc.)
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which are the commonly used techniques for the
MB pipelining architectures. Take zigzag scan [36]
for example, several successive MBs in a horizontal
direction will be processed before the vertical scan
starts, and MB rows are processed alternately in the
vertical scan. The former can guarantee that the data
dependencies of neighboring MBs are satisfied. The
performance of the proposed CDSR algorithm is
influenced only for the MBs at the beginning and
at the end of the frame. For high definition applica-
tions, the performance degradation can be ignored.
(4)
 Power consumption. Benefiting from the predict-
able processing time, the variable frequency tech-
nique can be easily integrated with the proposed
CSDR algorithm. The system operating frequency
can vary according to the computing requirement
of ME. For the BPU (a MB, a slice, or a frame) that
the predicted computing requirement is lower
than the computation budget, operating frequency
can be dynamically decreased to a specific level to
save the power consumption.
Therefore, the proposed CDSR algorithm can be easily
integrated into a VLSI-based ME architecture.
Table 4
Notations used in the proposed computatio

Notation Definition

Nmbpic Total number of MBs in a fra
Nmbunit Number of contiguous MBs i
γ Cauchy parameter for MVD d
ΛTH Probability that an optimal M
Distcur,Disti Reference distances for curre
δs ,δt Spatial and temporal motion

block
δ Average prediction difference
θ PMV deviation metric for cur
ξ1,ξ2,c Coefficients for the Cauchy p
Tpic ,Tunit Computation budget for one
Ψ Computational complexity fo
ε1,ε2 Computation consumption p

preparation
Θj kð Þ,Θ̂j kð Þ Actual and predicted mean s

λ1,λ2 Two coefficients of linear pre
Ti;j kð Þ Number of remaining compu

Nmbunit� ið Þ MBs
ti;j kð Þ,t̂i;j kð Þ Actual and estimated compu

MB in thejth BPU
~Γ i;j kð Þ Average computational comp

the jth BPU
Si;j kð Þ Predicted search range of ME

ay based ME engines.

ine NPE ε1; ε2ð Þ Working frequen

d 256 (1, 2,048) 2–10
10–50

rformance 1024 (1, 16,384) 25–100
75–256
Our proposed CDSR control algorithm is described in
detail in Table 3. The notations used in the proposed
computation-constrained dynamic search range algorithm
are summarized in Table 4.

With the dynamic search range prediction algorithm
and computation budget allocation model, the proposed
CDSR algorithm can allocate more computation budget to
the block with high PMV deviation and less computation
budget to the well-matched motion predicted block, while
maintaining a limited computing requirements such that
real-time processing is guaranteed.
4. Experimental results and discussions

The proposed computation-constrained DSR control
algorithm is implemented on JM18.4 of H.264/AVC under
conditions: Profile/Level: 77/40, Reference frames: 2, Full
Search ME, RC on and CABAC, IPPP encoding structure.
Computation consumption was theoretically calculated
based on the previously introduced computational com-
plexity model and on the SR.

To exhibit the advantages of the proposed algorithm,
different types of ME Engines based on the 2D PE array [37]
as shown in Table 5 are compared to in our experiment. The
n-constrained DSR control algorithm.

me
n a BPU
istribution
V falls into a search window
nt and neighboring blocks
prediction differences for current

for previously coded blocks
rent block
arameter estimation model
frame and one BPU, respectively
r a ME algorithm
er pixel and overhead of data

quare of PMV deviation

diction model
tation budget for the remaining

tation consumptions for the ith

lexity for the remaining MBs in

for the ith MB in the jth BPU

cy(MHz) Supported Video Spec. Equivalent fixed SR

CIF@30fps [�5, 4]–[�11, 10]
SD@30fps [�6, 5]–[�10, 9]
720P@30fps [�11, 10]–[�22, 21]
1080P@30fps [�13, 12]–[�23, 22]
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ME Engines are configured with a different scale for the PE
array and working frequency to satisfy the throughput
requirements of different video specifications.

We defined four measures for evaluating the perfor-
mance of CDSR, including average search range (ASR),
worst computing utilization rate (WCR), average PSNR
difference compared with its equivalent Fixed SR algo-
rithm (ΔESR) and average PSNR difference compared with
its computation-unlimited DSR algorithm (ΔUN). ASR
denotes the average search range for the DSR ME in the
whole video sequence. WCR denotes the worst-case com-
puting utilization rate for the DSR algorithm implemented
on the specific ME engine. It indicates the required
computing resources for the DSR ME to guarantee the
real-time operation. If the value of the WCR is higher than
100%, the real-time processing of the system is not
guaranteed on the adopted ME engine. ΔESR and ΔUN
are used to compare the coding performance difference
between different DSR algorithms. We utilize the popular
method proposed in [38] for calculating the average PSNR
differences between R and D curves. And in order to
evaluate the performance of the algorithm objectively,
we choose four video sequences with different resolutions
and different degree of movement for the performance
evaluation. The proposed computation-constrained DSR
algorithm was implemented based on the ME Engines
listed in Table 5.

Due to the limitations of the system architecture and of
the linear prediction model, the size of BPU has to be
carefully chosen for the proposed CDSR algorithm before
the evaluation. In Fig. 7, the SRs and PSNR curves of the
proposed algorithm for the BasketballDrive sequence is
shown with four BPU sizes: 120 (1 MB row), 720 (6 MB
rows), 4080 (half frame) and 8160 (one frame).

We notice that the size of BPU influences the perfor-
mance of the CDSR algorithm. There is an obvious PSNR
degradation for the scenario with high motions (80–90th
frame) when one MB row is adopted as the BPU size. Such
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Fig. 7. Comparisons of CDSR with different sizes of BPU. (a) Search range com
(b) PSNR curves for BasketballDrive 8 Mbps with HiME@256Mhz and ΛTH ¼ 95%
observation accords with our adopted linear prediction
model. As explained in the previous section, the computa-
tional complexity Θ for the current BPU is linearly pre-
dicted from its co-located BPUs in previous frames. If the
size of the BPU is not large enough, such as smaller than
one MB row, the prediction accuracy of the linear predic-
tion model cannot be guaranteed for the large/irregular
motion. Meanwhile, the range of computation budget
allocation is very limited for the small BPU size and the
accuracy for the computational complexity prediction will
have great effect on the performance of CDSR. If finer
grained parallelism is required for the system architecture,
the performance degradation can be alleviated by adopt-
ing a more accurate computational complexity prediction
method such as look-ahead pre-processing rather than the
linear prediction model.

We compare the SRs and image quality degradation of
different DSR algorithms and their equivalent fixed-SR in
Figs. 8 and 9, respectively, where the size of BPU was set as
six MB rows and the hitting probability ΛTH was set as 95%.
The computation-constrained DSR algorithm with unlimited
computing resources ðTpic ¼1Þ and DSR algorithms pro-
posed by Lou [21] and Song [17] were implemented for
performance benchmarking. The “StME” and “HiME” denote
the CDSR algorithm with standard and high performance ME
engines, respectively. The “Unlimited” denotes the CDSR
algorithmwith unlimited computing resources. The “FS@ESR”
represents the fixed-SR full search algorithm with a specific
equivalent SR.

In Fig. 8, we can see that the proposed computation-
constrained DSR algorithm maintains a very stable com-
putation consumption when compared to the benchmarks
which used dynamic search range prediction techniques
but without a computing management scheme. The com-
puting requirements of the Song’s algorithm vary greatly
with the video content. It shows large SRs for the Stefan
and Pingpong sequences while maintaining very low
SRs for the Night and BasketballDrive sequences. The
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parisons for BasketballDrive 8 Mbps with HiME@256Mhz and ΛTH ¼ 95%.
.



Fig. 8. Search range comparisons for different DSR algorithms. (a) Stefan 800 kbps with Nmbunit ¼ 132 and ΛTH ¼ 95%.(b) Pingpong 1.5 Mbps with
Nmbunit ¼ 270 and ΛTH ¼ 95%. (c) Night 4 Mbps with Nmbunit ¼ 480 and ΛTH ¼ 95%. (d) BasketballDrive 8 Mbps with Nmbunit ¼ 720 and ΛTH ¼ 95%.
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computing requirements of the Lou’s algorithm basically
follow the complexity of motions in the test sequences.
However, the SR in Lou’s algorithm is dramatically increa-
sed for the frames with various motions (e.g. Pingpong
50–55th frame). The SR values above the line of equivalent
fixed SR indicate that the real-time processing is not
guaranteed on the corresponding ME Engines for the
benchmarks. The proposed CDSR algorithm allocates more
computing resources to the fast moving objects in the
scene, such as Stefan (90–100th frame) and BasketballDrive
(80–90th frame). Fig. 9 shows that the proposed CDSR
algorithm provides higher video quality compared with
their equivalent fixed SR algorithm. R–D curves for differ-
ent DSR algorithms are shown in Fig. 10. The video qua-
lity of the proposed algorithm improves with the increase
of computation capacity, especially for the scenes with
fast moving foregrounds. Moreover, the proposed CDSR
with unlimited computing resources achieves the highest
coding performance compared with the benchmarks. The
superior coding performance originates from the more
accurate model between SR and MVD, and the computa-
tion budget allocation algorithm. Song’s algorithm shows
very low search range for the Night and BasketballDrive
sequences. However, the computation reduction is achieved
at the expense of RD performance degradation (e.g. Basket-
ballDrive 60–80th frame) compared with other DSRs.

Fig. 11 shows the visual quality results of the “Stefan
(CIF)” sequence among different DSR algorithms. There are
visible differences in some regions (e.g. the body boundary
and the smooth background) of the decoded frame. Song’s
algorithm and the proposed CDSR with unlimited comput-
ing resources have the best visual quality. The proposed
CDSR with StME@6Mhz perform better than its equivalent
Fixed SR algorithm and has a similar visual quality com-
pared with Lou’s algorithms. The detailed experimental
results are given in Table 6. From the observation of the



Fig. 9. PSNR curves for different DSR algorithms. (a) Stefan 800Kbps with Nmbunit ¼ 132 and ΛTH ¼ 95%. (b) Pingpong 1.5 Mbps with Nmbunit ¼ 270 and
ΛTH ¼ 95%. (c) Night 4 Mbps with Nmbunit ¼ 480 and ΛTH ¼ 95%. (d) BasketballDrive 8 Mbps with Nmbunit ¼ 720 and ΛTH ¼ 95%.

X. Ji et al. / Signal Processing: Image Communication 31 (2015) 134–150 147
table, we can see that the proposed CDSR algorithm ach-
ieved about 0.1–0.3 dB average PSNR improvement when
the computation consumption is restricted to a specific
level as compared with its equivalent Fixed SR algorithm.
The higher the motion of the sequence is, the larger the
video quality improvement represented by the ΔESR can
be achieved, for example, an increase of 0.27 dB was
observed for the BasketballDrive sequence. The quality
degradation compared with the computation-unlimited
DSR algorithm ΔUN decreases with the increase in the
hardware performance. For the ME with high performance
PE engine (e.g., HiME@100Mhz for 720P), only 0.04 dB
quality degradation on average is brought by the proposed
CDSR algorithm which is negligible compared with the
computation-unlimited DSR algorithms. The average SR
for the CDSR algorithm is below its equivalent Fixed SR.
The WCRs of the proposed CDSR algorithm are always less
than 100% and they are much smaller than the unlimited
and Lou’s algorithm. Although Song’s algorithm shows low
ASRs and WCRs for the 720P and 1080P sequences, the
computation reduction is achieved at the expense of RD
performance degradation compared with other DSRs. With
the WCR values of the proposed CDSR and the bench-
marks, the computation reduction efficiency can be eval-
uated by the following equations:

WCRbenchmark�WCRCDSRð Þ
WCRbenchmark

: ð30Þ

It can achieve about 50–90% computation savings
compared with the benchmarks, and the video quality of
the proposed algorithm improves with the increase of



Fig. 10. R–D curves for different DSR algorithms. (a) Stefan with Nmbunit ¼ 132 and ΛTH ¼ 95%. (b) Pingpong with Nmbunit ¼ 270 and ΛTH ¼ 95%. (c) Night with
Nmbunit ¼ 480 and ΛTH ¼ 95%. (d) BasketballDrive with Nmbunit ¼ 720 and ΛTH ¼ 95%.
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hardware resources. As a result, it is verified that the
proposed CDSR algorithm is an effective method to man-
age the computation consumption of the DSR algorithm
while keeping similar RD performance.

5. Conclusion

DSR is a commonly used method to reduce computational
complexity of ME. In this paper, we presented an effective
PMV deviation metric to model the relationship between SR
and MVD distribution according to the prediction differences
of both temporal and spatial neighboring motions. In addition,
a computation-constrained DSR control algorithm is proposed
to manage the computational complexity while maximizing
video coding quality in a real-time computational constrained
scenario. The SR is dynamically determined by three factors:
motion complexity, user-defined probability and computation
budget. The proposed CDSR is an effective and quantifiable
algorithm to allocate more computation budget to the blocks
with high PMV deviations, and less computation budget to the
well-matched motion predicted blocks, while maintaining a
constrained computation requirement. According to the
experimental results, the proposed CDSR control algorithm
is proven to be an effective method to manage the computa-
tion consumption of the DSR algorithm while keeping similar
RD performance. It can achieve about 0.1–0.3 dB average
PSNR improvement when the computation consumption is
restricted to a specific level as compared with its equivalent



Fig. 11. Visual comparison of the benchmarks and the proposed CDSR. (a) Ground truth. (b) FS@ESR8. (c) the result of Lou. (d) the result of Song. (e) the
result of the proposed CDSR with unlimited computing resources. (f) the result of the proposed CDSR with StME@6Mhz.

Table 6
Experimental results for different DSR algorithms.

Sequence ME engine Equivalent
fix SR

CDSR Unlimited Lou Song

ΔESR
(dB)

ΔUN
(dB)

ASR WCR
(%)

ΔESR
(dB)

ASR WCR
(%)

ΔESR
(dB)

ASR WCR
(%)

ΔESR
(dB)

ASRa WCR
(%)

Stefan (CIF) StME@2Mhz [�5, 4] þ0.27 �0.17 4.5 92 þ0.44 8.6 918 þ0.42 6.1 1242 þ0.49 14.2 807
StME@6Mhz [�8, 7] þ0.10 �0.03 6.2 90 þ0.13 358 þ0.11 485 þ0.17 315
StME@10Mhz [�11, 10] þ0.07 �0.02 7.3 82 þ0.09 189 þ0.07 257 þ0.14 167

Pingpong (SD) StME@10Mhz [�5, 4] þ0.11 �0.28 4.2 96 þ0.39 9.8 2360 þ0.42 8.6 2775 þ0.49 11.9 566
StME@30Mhz [�8, 7] þ0.09 �0.11 5.7 99 þ0.20 922 þ0.23 1084 þ0.30 221
StME@50Mhz [�11, 10] þ0.12 �0.05 7.1 99 þ0.17 488 þ0.21 573 þ0.28 117

Night (720P) HiME@25Mhz [�11, 10] þ0.15 �0.19 9.8 94 þ0.34 23.8 472 þ0.27 26.3 571 þ0.21 10.4 89
HiME@64Mhz [�16, 15] þ0.07 �0.14 13.8 86 þ0.21 223 þ0.14 270 þ0.08 42
HiME@100Mhz [�22, 21] þ0.09 �0.04 18.0 81 þ0.14 118 þ0.07 143 þ0.01 22

BasketballDrive
(1080P)

HiME@75Mhz [�11, 10] þ0.27 �0.05 9.1 82 þ0.32 26.0 950 þ0.30 24.9 815 þ0.05 9.9 81
HiME@160Mhz [�16, 15] þ0.16 �0.04 15.3 99 þ0.20 449 þ0.19 385 �0.06 38
HiME@256Mhz [�22, 21] þ0.17 �0.01 19.7 98 þ0.18 237 þ0.17 204 �0.09 20

a 3-step search range modification stage is included for the ASR calculation.

X. Ji et al. / Signal Processing: Image Communication 31 (2015) 134–150 149
Fixed SR algorithm and can achieve about 50–90% computa-
tion savings when compared to the benchmarks.
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