IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

A Benchmark Dataset and Evaluation for
Non-Lambertian and Uncalibrated
Photometric Stereo

Boxin Shi, Member, IEEE, Zhipeng Mo, Zhe Wu, Dinglong Duan,
Sai-Kit Yeung Member, IEEE, and Ping Tan, Senior Member, IEEE

Abstract—Classic photometric stereo is often extended to deal with real-world materials and work with unknown lighting conditions for
practicability. To quantitatively evaluate non-Lambertian and uncalibrated photometric stereo, a photometric stereo image dataset
containing objects of various shapes with complex reflectance properties and high-quality ground truth normals is still missing. In this
paper, we introduce the ‘DiLiGenT dataset with calibrated Directional Lightings, objects of General reflectance with different shininess,
and ‘ground Truth’ normals from high-precision laser scanning. We use our dataset to quantitatively evaluate state-of-the-art
photometric stereo methods for general materials and unknown lighting conditions, selected from a newly proposed photometric stereo
taxonomy emphasizing non-Lambertian and uncalibrated methods. The dataset and evaluation results are made publicly available, and
we hope it can serve as a benchmark platform that inspires future research.
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1 INTRODUCTION

THE classic photometric stereo problem [1] assumes
a Lambertian surface reflectance model, a fixed or-
thographic camera with linear radiometric response, and
known directional illuminations to inversely solve for the
radiometric image formation model under different light-
ings and hence recover a per-pixel surface normal map from
at least three images. Different from multi-view stereo, pho-
tometric stereo algorithms evolve from diversifying their
image formation model assumptions and imaging condi-
tions beyond the classic concept, e.g., from Lambertian to
non-Lambertian surface, from known to unknown lighting
conditions, from directional to environmental lighting, from
orthographic to perspective camera, from single to multi-
ple viewpoints, from static to dynamic scenes, and so on.
Modern algorithms are developed to deal with surfaces
with general reflectance [2], uncalibrated lighting [3], gen-
eral environment illumination [4], perspective camera [5],
multiple viewpoints [6], moving objects [7], and so on. Such
diversification raises the need of an organized categoriza-
tion or taxonomy for photometric stereo algorithms. It also
brings great challenges to quantitatively compare photo-
metric stereo algorithms using a benchmark dataset with
ground truth, while successful examples greatly inspiring
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future research exist in multi-view stereo [8].

This paper aims to provide a taxonomy, a benchmark
dataset and quantitative evaluation for photometric stereo
algorithms. To make benchmarking photometric stereo fea-
sible, we narrow our scope to specific categories of algo-
rithms. In particular, we focus on two major difficulties in
photometric stereo — non-Lambertian and uncalibrated algo-
rithms, under the classic data capture setup [1] — directional
lighting and a fixed orthographic camera. Understanding
the performance of photometric stereo under such condi-
tions is basic for many other extensions (e.g., multi-view,
general environment lighting, dynamic scenes, efc.).

We first provide a taxonomy of photometric stereo
methods, with an emphasis on recent non-Lambertian and
uncalibrated algorithms, followed by a brief categorization
for other extensions beyond the classic data capture setup
and different numbers of input images. We then present
the ‘DiLiGenT’ photometric stereo image dataset which
is captured under carefully calibrated directional lightings,
with reference shapes for all objects provided by a high-
end laser scanner. Our dataset contains objects of various
materials and shapes, from ideally diffuse to highly re-
flective, from smooth to bristly. Finally, we quantitatively
evaluate recently representative non-Lambertian [2, 9-15]
and uncalibrated [3, 16-19] photometric stereo algorithms to
understand their pros and cons and motivate future research
on unsolved issues. The dataset and evaluation results are
available for download from our project website:
https:/ /sites.google.com/site /photometricstereodata/.

Our main contributions are threefold:

e An up-to-date survey and taxonomy on recent pho-
tometric stereo techniques with a special focus on
non-Lambertian and uncalibrated methods;


https://sites.google.com/site/photometricstereodata/
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o The first photometric stereo dataset with ‘ground
truth” shapes and objects of complex reflectance for
single-view methods under the directional lightings;

e A quantitative evaluation of recent non-Lambertian
and uncalibrated photometric stereo algorithms,
which serves as a benchmark platform together with
the dataset.

This paper extends its preliminary version [20] in all three
aspects of contributions above. We provide a more compre-
hensive taxonomy by categorizing additional relevant and
recent works in Section 2. We expand the previous dataset
with additional nine sets of data but without releasing
the ‘ground truth’ for better evaluating newly proposed
methods and we show details in creating the ‘DiLiGenT’
dataset including the lighting calibration, ‘ground truth’
shape scanning, and shape-normal alignment in Section 3.
Finally, we add analysis to the performance of state-of-the-
art non-Lambertian and uncalibrated photometric stereo al-
gorithms under varying lighting distributions and with var-
ious error inducing factors such as attached/cast shadow,
interreflection, elevation angle of normal, and half angle
(specularity) in Section 4.

2 A PHOTOMETRIC STEREO TAXONOMY

We start categorizing photometric stereo algorithms under
the classic data capture setup, i.e., the scene is illuminated by
directional lightings and recorded with a fixed orthographic
camera. With such a setup, the main challenges for photo-
metric stereo are how to deal with non-Lambertian materials
(Section 2.1) and unknown lighting conditions (Section 2.2).
To provide a complete taxonomy, we briefly review other
photometric stereo algorithms beyond the classic data cap-
ture setup in Section 2.3 and number of images required for
different algorithms in Section 2.4. There are many different
ways to categorize photometric stereo algorithms; we refer
the reader to [21] for discussing the relationship between
photometric and other 3D modeling approaches and [22]
for detailed review of representative methods.

2.1

Lambert’s reflectance model is widely adopted in photomet-
ric stereo for its simplicity. However, the real-world is full
of non-Lambertian objects. Many photometric stereo algo-
rithms have been developed to deal with non-Lambertian
materials.

Non-Lambertian photometric stereo problems could be
summarized as in the top row of Table 1'. Here, Ipxq
is the observation matrix of P points under () different
lighting conditions; N}, ., and L3y are stacks of normal
vector n € R3*! and lighting vector 1 € R3*! respectively;
p(n,1)pxq are the Bidirectional Reflectance Distribution
Function (BRDF) values for each observation, which is a
function of normal and lighting directions given viewing
direction fixed at v = (0,0,1)T; and ‘o’ denotes the element-
wise multiplication.

The Lambertian photometric stereo [1] (BASELINE) sim-
ply assumes p(n, 1) is a constant function (unknown scaling)

Non-Lambertian photometric stereo

1. Please refer to the supplementary material for an illustration of the
coordinate system and notations.

2

of n and 1, and attached shadow (max{-,0}) can also be
ignored. Given calibrated L, the surface normal matrix N
is solved by linear Least Squares, and the reflectance values
are approximated by normalizing each row of the estimated
N. The goal of non-Lambertian photometric stereo meth-
ods is to estimate N when p(n,1) is a general unknown
reflectance function.

Outlier rejection based methods assume non-
Lambertian phenomena (such as shadow and specular high-
light) are local and sparse, such that they can be detected
and discarded as outliers. Earlier methods [23-25] select
three optimal lights out of four where the surface appears
mostly Lambertian to estimate normal. With more input
images, this subset of Lambertian images can be extracted in
a more robust manner by Markov random field [26], graph
cuts [27], RANSAC [28, 29], maximum-likelihood estimation
[30], maximum feasible subsystem [31], taking the median
values [32], using robust SVD [33], or expectation maximiza-
tion [34]. Instead of discarding non-Lambertian reflection as
outliers, Zickler et al. [35] analyze in a subspace that is free
from highlights.

Recent methods apply robust statistical techniques to
reject outliers, by assuming a low-rank (Lambertian) ob-
servation matrix plus a sparse outlier matrix (shadow and
specularity) [9, 10] (WG10, IW12), as shown in Table 1. The
difference is that WG10 [9] aims at minimizing the rank of
matrix, while IW12 [10] employs sparse Bayesian regression
to explicitly enforce the rank-3 constraint. Such rank min-
imization approaches have the advantages of robustness,
since the only assumption to the outlier matrix is its sparsity
regardless of the error magnitude and distribution.

Outlier rejection based methods generally cannot deal
with materials with broad and soft specular reflection,
where the non-Lambertian outliers are dense. They often
require more input images to make statistical analysis.

Analytic reflectance models are employed in some
photometric stereo algorithms to model non-Lambertian
reflectance. Instead of discarding specular reflection as out-
liers, they fit a nonlinear analytic BRDF to interpret all the
observed data. Therefore, they have the advantage of ex-
ploiting all available data. Along this direction, various an-
alytic BRDF models have been incorporated, including the
Blinn-Phong model [36], the Torrance-Sparrow model [37],
the Ward model [38], a mixture of multiple Ward models
[2, 39], specular spike model [40, 41], and a microfacet BRDF
with ellipsoid normal distribution function [42].

Take the method in [2] (GC10) as an example. GC10 [2]
adopts the Ward model to explicitly represent p(n,1). Each
Ward lobe involves several parameters — diffuse strength d,
specular strength s, and surface roughness « — to describe
the shininess of the surface, as summarized in Table 1. In
order to handle spatially-varying BRDFs, GC10 [2] linearly
combines several p;(d;, s;, ;) (i-th basis materials) multi-
plied by a spatially-varying weight w;. GC10 [2] needs to
solve a nonlinear system for {d;, s;, «;, w; } besides estimat-
ing surface normal n, which is computationally expensive.

The drawback of such approaches is that the analytic
models vary significantly from material to material, and
each of them is limited to a narrow class of materials.
Furthermore, these models are highly nonlinear. So such
approaches in principal require complicated case by case
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TABLE 1
Summary of non-Lambertian photometric stereo assumptions and formulations.

Solve N from I = max{p(n,1) o (NTL),0} by using different assumptions and constraints on p(n, 1)
Notations: h = (1 +v)/||[1+ V||, 8, = (n,h) = arccos(n'h), ; = (1, h) = arccos(1" h)
BASELINE [1] | p(n,1) = D, where each row of D is a constant representing the albedo of a Lambertian surface
WG10 [9] p(n,1) = D + E, where E is sparse and rank(I) is minimized
W12 [10] p(n,1) = D + E, where E is sparse and rank(I) = 3
-

GC10 [2] p(n,1) = 3>, w; 0 p;(ds, s, ), where p;(ds, s;, ;) = % + 47ra2\/(|:irl)(n7v) exp ((1_10/‘%“ h>)
AZ08 [11] p(n,1) is isotropic and depends only on (0}, 04)
ST12 [12] p(n,1) is isotropic, depends only on 6}, and is monotonic about n'h
HM10 [13] p(n, 1) is isotropic, monotonic about n' 1, and p(n,1) =0 forn'1< 0
ST14 [14] The low-frequency part of p(n, 1) is a bi-polynomial A(cos(6y,))B(cos(64)), where A and B are polynomials
1A14 [15] p(n,l) =~ > p;(nTa;), where a; = (p;1+ ¢;v)/|[p:l + ¢ v[, ps, ¢; are nonnegative unknown values

analysis for different material classes.

General properties of a BRDF such as isotropy, reci-
procity, and monotonicity are valid for a broader class
of materials. Photometric stereo algorithms capitalizing on
these general properties have the potential to deal with
much broader types of materials.

Many real world materials are isotropic, which show
structured BRDF values. Isotropy BRDFs have the property
that equal reflectance values are observed if n is symmetric
about the plane spanned by v and L. By exploring isotropy,
the azimuth angle of a surface normal can be computed
[43], and ‘iso-depth” and ‘“iso-slope” contours [43—45] can be
derived. It has been proved in [44, 45] that these two sets of
contours determine the surface shape. The isotropic BRDFs
can also be represented using a dictionary built from MERL
database [46] to regularize the surface normal and solve the
spatially-varying reflectance simultaneously [47].

Many isotropic BRDFs can be well approximated by
bivariate functions [48], which allows iterative estimation of
surface normals and BRDF represented using a 2D discrete
table [11] (AZ08). By further assuming this bivariate func-
tion is monotonic in one dimension, Shi et al. [12] (ST12)
estimate the elevation angle of a surface normal by search-
ing for the correct candidate showing monotonic BRDF
values. AZ08 [11], ST12 [12], and more recently in [49] are
‘two-step” approaches that first estimate the azimuth angle
using isotropic constraint [43] before the elevation angle
estimation. Isotropy and monotonicity are further combined
with visibility constraint in [13] (HM10) to deal with general
materials whose BRDF consists of a single lobe. Some recent
methods [14, 15] (5T14, 1A14) develop novel bivariate BRDF
representations to facilitate normal estimation. They use two
thresholds, one to exclude shadows and the other one to
exclude specular reflections, so the remaining reflectance
values vary slowly. The specular threshold is necessary for
ST14 [14], but optional for IA14 [15]. ST14 [14] models such
low-frequency reflectance using a bi-polynomial represen-
tation, while IA14 [15] models it as a sum of lobes with
unknown center directions. Please refer to Table 1 for their
analytic formulae and constraints on general BRDFs.

Handling anisotropic BRDF is a well-known difficult
problem for photometric stereo. Holroyd et al. [50] utilize a
symmetric elliptical microfacet normal distribution function
to solve this issue. This can also be solved by example-
based methods like [51-53], which capture example (known
shape) and target (unknown shape) objects of the same
material under varying lighting conditions. The example-
based approach has been adopted to build a high-resolution

microgeometry sensor [54].

The photometric stereo problem can also be solved by
embedding all pixels to a hemisphere (i.e., a 2D manifold
representing all possible normal directions) while keeping
appropriate distances between different pixels. Such dis-
tances are measured before embedding by similarity of pixel
intensity profiles derived from analytic BRDFs [55], general
isotropic BRDFs [19, 56], or attached shadow codes [57]
which in principal can also handle anisotropic BRDFs.

2.2 Uncalibrated photometric stereo

Many photometric stereo algorithms assume known light-
ing conditions. Typically, this requires inserting additional
calibration objects, such as a mirror sphere, into the scene
during data capture. This process is tedious and the cal-
ibration sphere often causes interreflection on other scene
objects. So uncalibrated methods are developed to automat-
ically calibrate lighting conditions.

Most uncalibrated photometric stereo methods are Lam-
bertian and based on the factorization technique proposed
in [58]. The Lambertian assumption simplifies p(n,1) as D
with each row of D being a constant, so that I = STL
and ST encodes the albedo-scaled normals. By applying
SVD (or matrix factorization considering missing elements
[59]), the pseudo-normal S, which is different from the true
albedo-scaled normal S by a 3 x 3 ambiguity matrix A,
can be decomposed, as shown in the top row of Table 2.
Resolving this intrinsic shape-lighting ambiguity requires
additional information. It is solved up to a rotation ambi-
guity, if six points with the same albedo or six lights of
the same intensity can be identified [58]. If the surface is
integrable [60] or the shadow boundary is observed [61],
this ambiguity is reduced to the General Bas-Relief (GBR)
ambiguity [62], which is denoted as the matrix G with only
three unknowns. Since then, many algorithms have been
developed to further resolve this GBR ambiguity. There are
methods relying on analyzing the specular spikes [63, 64],
parametric specular reflection [37], isotropic specular reflec-
tion [18, 65, 66], interreflection [67], a ring of light sources
[68], and a perspective camera [69, 70].

We summarize some recent methods and their con-
straints for solving the ambiguity matrix G in Table 2.
Alldrin ef al. [3] (AMO07) assume the distribution of albedos
in a natural image contains a few dominant values (i.e., a
few dominant colors of a scene), so that the GBR transform
can be found by minimizing the entropy of this distribution.
Shi et al. [16] (SM10) automatically identify pixels with
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TABLE 2
Summary of uncalibrated photometric stereo constraints and solutions.

Solve N from I = max{p(n,1) o (NTL), 0} when L is unknown
For Lambertian objects, I = max{D o (NTL),0}=STL=STATA"'L=STG"G 'L

AMO7 [3] | D has only a few different albedos, i.e., the rows of S have only a few different lengths

SMI0 [16] | Several surface points have equal albedo, i.e., several rows of S having equal length are identified

PF14 [17] Several points with locally maximum intensity on a Lambertian surface, i.e., points with n = 1 are identified
WTI3[18] | p(n,1) = D + p,(0n,04), i.e., the specular reflection depends only on {6,604}

the same albedo by chromaticity clustering to solve G.
Papadhimitri and Favaro [17] (PF14) propose to identify
local diffuse reflectance (LDR) maxima, where the normal
vector is coincident with the lighting direction. Wu and Tan
[18] (WT13) assume an additive bivariate specular reflection
to solve the GBR ambiguity. SM10 [16] and PF14 [17] need
to select desired pixels (or lighting directions), but their
solutions for G are quite simple, i.e., a linear problem for
SM10 [16] and a close-form solution for PF14 [17]. AMO07 [3]
and WT13 [18] seek the optimal three unknowns in G by a
brute-force search.

Manifold embedding based methods [19, ] can also
work with uncalibrated lighting conditions. They first re-
cover normals up to a global rotation ambiguity, which is re-
moved by boundary or integrability constraint. In particular,
the method in [19] (LM13) directly handles general isotropic
BRDFs by mapping the distances of intensity profiles to
angular differences of normals, and its extension [56] im-
proves the accuracy of elevation angle estimation by BRDF
symmetry based on the azimuth angle estimation from [19];
both methods cannot be described using the framework in
Table 2.

2.3 Beyond the classic data capture setup

Point lighting is a more precise model and its lighting
direction varies spatially. Such a model is often used for a
nearby light source, with the lighting intensity fall-off being
considered [71, 72]. This model is adopted in [73] to build
a handheld photometric stereo device. The LCD monitor
can be used as the light source for photometric stereo by
assuming an extended near point lighting model [74, 75].
Involving the near point lighting model will make the
problem becomes nonlinear, but a recent work formulates
the problem in a mesh deformation framework to avoid
conventional integration and nonlinear optimization [76].
General lighting (or environment lighting) based meth-
ods allow photometric stereo to work in less constrained
lighting conditions. Environment lighting could be repre-
sented as a spherical function. Basri et al. [4] take spherical
harmonics representation and extend the factorization based
photometric stereo method [58] to arbitrary lighting and
solve the problem up to four or nine dimensional linear
ambiguity. Such a spherical representation is adopted by
many methods [77-80] that study photometric stereo in
general lighting. Environment lighting can also be repre-
sented as a sum of many directional lights and calibrated
by a mirror sphere [81, 82]. General lighting model is often
employed by outdoor photometric stereo problems. Jung et
al. [83] use quadratic skylight plus a Gaussian sunlight,
which is more general than considering only the sunlight
as a directional lighting [39, 84]. Hold-Geoffroy et al. [85, 86]
analyze the condition to apply outdoor photometric stereo

with a lighting model considering illumination from sun,
sky, and clouds.

Perspective camera model is a more precise camera
model. A perspective camera model will improve photo-
metric stereo at the cost of nonlinear optimization [5] or
solving differential equation for Lambertian [87] and non-
Lambertian materials [88]. Perspective model is also useful
in building a handheld photometric stereo camera [73],
binocular photometric stereo [89], and auto-calibrating the
lighting conditions [69, 70].

Cameras with non-linear response distort the scene
radiance values. While most of the methods apply a sep-
arate radiometric calibration to correct this distortion, some
methods [16, 39, 80, 84] include automatic radiometric
calibration. Reflectance monotonicity [13], symmetry [43],
manifold embedding [55, 57], and example-based methods
[51-53] are naturally unaffected by the nonlinear camera
response. Thus, radiometric calibration is not required for
these methods.

Color lighting based methods simplify data capture by
treating different color channels as independent images.
Under separate red, green, and blue lighting, a single image
allows Lambertian photometric stereo to be applied for
dynamic shape reconstruction [90-93].

Depth prior from other sensors (e.g., the Kinect sensor)
can correct the low-frequency shape distortion [94] often
associated with the results from photometric stereo. Fusing
depth and normal produces high quality surface recon-
structions | ], even if the reflectance and illumination
information are not very accurate [99].

Multiple viewpoints provide useful constraints in var-
ious aspects. Depth estimates from binocular stereo can
be fused with photometric stereo [100]. While single-view
methods only recover a normal map, multi-view photomet-
ric stereo methods reconstruct a complete 3D model [6, 101—

]. The rough shape from multi-view stereo can calibrate
directional lighting [6, 7, 103-105], near point lighting [73],
or general lighting [80] for Lambertian surfaces. For arbi-
trary isotropic surfaces, Zhou et al. [102] fuse the iso-depth
contours reconstructed by [43] from multiple viewpoints. Si-
multaneous shape and reflectance recovery is more tractable
given multi-view data for directional lighting [102, B
general lighting [107], or polarized spherical gradient illu-
mination [108-110].

Object motion provides stronger constraint than multi-
view data when illumination condition is fixed, since the
angle between lighting and surface normal varies under
object motion. The 3D shape can be recovered from object
motion with as few as two frames [111]. With more frames,
it can calibrate the directional lighting [7, 112] and general
lighting [77] for Lambertian surfaces, and directional light-
ing for general BRDFs [113].
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Special applications of photometric stereo which are
beyond all above categories are summarized here. Pho-
tometric stereo can be extended to multi-spectral domain
[114] by exploring the wavelength dependence of material
reflectance. Photometric stereo can also be extended to deal
with more complicated materials such as translucent objects
by combining with deconvolution technique [115, 116] or
fluorescent materials for either calibrated [117] or uncali-
brated [118] lighting condition. By compensating backward
scattering of murky media [119], photometric stereo works
for objects immersed in murky water. By using a high-speed
video camera and synchronized lighting [120], photometric
stereo works in real time. Photometric stereo can also be
combined with shape from polarization to complement the
weakness of each other in either calibrated or uncalibrated
setup [121].

2.4 Number of input images

We further categorize photometric stereo methods accord-
ing to their number of input images. The basic trend is the
more general assumption and complicated problem require
more images as input.

A small number of images (at least three) are required
for classic photometric stereo [1]. By regarding the RGB
channels as three independent images, a single color image
under independent red, green, and blue lights [90, 91, 93] or
natural illumination [122]* allows photometric stereo. More
input images help to enhance the system robustness, such as
four-light [23-25, 35, 71] or five-light configuration [32]. Un-
der general lighting, the first order and second order spher-
ical harmonics approximations require at least four [78] or
nine images [4, 77]. Many photometric stereo algorithms
take more images than the theoretical minimum number for
better robustness. Typically 10 - 20 images are used for cal-
ibrated methods with shadow analysis [27], analytic BRDF
models [2, 37, 38, ], near point lighting [71, 72, 74, 76],
and general lighting [81, 82]. Most uncalibrated methods
under directional lighting [3, 16-18, 29, 44, 63, 64, 67, 69] or
near point lighting [61, 70] also take 10 - 20 input images.

A medium number of images (about 50 - 100) are
required for many outlier rejection based methods [9, 10,

, 30, 31, 33]. Most methods handling general BRDFs also
take about 50 - 100 images [11-15, 19, 43, 47]. Multi-view
methods naturally take more images since they need to cap-
ture images from different viewpoints. Lambertian multi-
view photometric stereo methods [6, 73] often take 50 - 100
images to cover more than 36 viewpoints.

A large number of images (about 500 - 1000) are re-
quired for outdoor photometric stereo [39, 84], manifold
embedding based methods [55, 57], handling anisotropic
BRDFs [50], transparent object by observing specular spike
[41], or outliers using statistical methods [26, 34]. Some
multi-view photometric stereo methods also take such a
number of images to deal with dynamic shapes [101], intri-
cate geometries [103], or non-Lambertian materials [53, 102].
If considering all frames taken by a video camera as input
images, some methods relying on object motion [7, 112] also
take about 1000 images.

2. This work is claimed as a shape from shading method since it only
needs one image, but its formulation is indeed photometric stereo by
treating three channels as three images.

3 PHOTOMETRIC STEREO DATASET

In this section, we introduce the ‘DiLiGenT’ dataset to
benchmark photometric stereo algorithms under classic data
capture setup (directional lighting, fixed and orthographic
camera) for non-Lambertian and uncalibrated methods.
There are a few publicly available dataset for Lambertian®-*
and non-Lambertian photometric stereo’ without ground
truth shapes; the point feature dataset in [124] and multi-
view stereo dataset in [125, ] also contain images under
varying lighting conditions and they have scanned shapes
provided. But none of existing datasets are suitable for
benchmarking non-Lambertian photometric stereo, because
most of their objects are simple in reflectance and the num-
ber of different lighting conditions is small. This motivates
us to create a new dataset with objects of various shapes and
BRDFs, carefully calibrated lighting conditions, and ‘ground
truth’ 3D shapes (normals).

3.1

The ‘DiLiGenT’ main dataset contains ten objects, as shown
in the top two rows of Figure 1. In terms of surface BRDFs,
it covers materials that are mostly diffuse (CAT) or with
a rough surface (POT1), with strong and sparse specular
spikes (BALL, READING), with broad and soft specular lobes
on uniform (BEAR, BUDDHA) and spatially-varying mate-
rials (POT2, GOBLET(’), and with metallic paint on mostly
uniform (COWw) and spatially-varying (HARVEST) surfaces.
In terms of surface shapes, we have the simple sphere
(BALL), smoothly curved surfaces (BEAR, CAT, GOBLET,
Cow), smooth surfaces with local details (POT1, POT2),
surfaces with complicated geometry (BUDDHA, READING),
and delicate shapes with concave parts (HARVEST).

Data capture is performed using a Point Grey Grasshop-
per (GRAS-50S5C-C) camera that has a linear radiometric
response function with a 50mm lens. All images have a
resolution of 2448 x 2048. The objects are about 20cm in
diameter and placed about 1.5m from the camera to approx-
imate orthographic projection. To avoid interreflection, all
images are recorded in a dark room with everything covered
by black cloth except the target object. For each lighting
condition, we take four images under different exposure
times and combine them to obtain a single input HDR
image, so that the highly specular observations can also be
precisely stored. A typical set of exposure time settings for
our data capture is {20, 40, 70,100} ms.

According to Section 2.4, most non-Lambertian methods
require about 100 differently illuminated images, so we
design our light sources as 96 white LED bulbs fixed on
a rectangular metal frame. The frame is divided into 12 x 8
regular samples spanning 74.6° x 51.4°, with one LED fixed
at each of the grid points. We design the light frame in
this way for its portability and efficiency in cost and space.

Overview of the dataset

3. http:/ /courses.cs.washington.edu/courses/csep576/05wi/
projects/project3/project3.htm

4. http:/ /vision.seas.harvard.edu/qsfs/Data.html

5. http:/ /vision.ucsd.edu/~nalldrin/research/

6. This object is made from one material, but the rust on surface
makes its BRDF spatially-varying. We exclude the concave interior of
this object for evaluation due to its strong interreflection, which is not
modeled in almost all existing photometric stereo algorithms.


http://courses.cs.washington.edu/courses/csep576/05wi/projects/project3/project3.htm
http://courses.cs.washington.edu/courses/csep576/05wi/projects/project3/project3.htm
http://vision.seas.harvard.edu/qsfs/Data.html
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Fig. 1. Samples of photometric stereo images (tone-mapped HDR images) and ‘ground truth’ normals for ten objects in the ‘DiLiGenT’ main (top
two rows) and sample images in the ‘DiLiGenT’ test (bottom row) datasets. The texts in brackets indicate the dominant reflectance properties of the

objects. Please zoom in the electronic version for better details.

During data capture, the light frame is fixed with the camera
at its center.

Test dataset for online benchmarking: We further cap-
ture these objects (except for BALL) from a different view-
point using the same lighting setup, as shown in the bottom
row of Figure 1. The images and lighting data are made
publicly available for both datasets, while the ‘ground truth’
normals are not released with the test dataset for the pur-
pose of evaluating newly proposed algorithms. Please refer
to our website for procedures of submitting and evaluating
new results.

3.2 Lighting condition calibration

Lighting condition calibration includes calibrating both light
source intensities and directions. The lighting intensity is
calibrated using a Macbeth white balance chart, which is
a good approximation of a uniform Lambertian surface.
All our HDR images are pre-normalized by the calibrated
lighting intensities when evaluating a photometric stereo
method.

Conventional lighting direction calibration for photo-
metric stereo assumes directional lighting and an ortho-
graphic camera. By identifying the specular point in the
image of a mirror sphere and calculating its normal, it is
easy to infer the lighting direction with the assumption that
the normal at the specular point bisects the angle between
viewing direction and lighting direction according to the
law of reflection: 1 = 2(n'v)n — v.

The simple approach above cannot meet the high de-
mand of accuracy as a benchmark dataset. By still using a
mirror sphere and considering the LED bulbs on a fixed grid
as a constraint, we could calibrate their 3D positions simul-
taneously by assuming the point light source and perspec-
tive camera models. With the lighting positions available,
the lighting directions for directional lighting assumption
are simply calculated by subtracting the sphere center po-
sition from the positions of LED bulbs. We use the lighting
intensities and directions for the evaluation in Section 4, but
we release the point light positions and camera calibration
information on our website so that people can also use
our dataset for evaluating methods that assume point light
source and/or perspective camera models.

The first step for calibration is to estimate the 3D position
of the sphere center C’. Estimating the sphere center starts
from acquiring an image taken under natural illumination.
We then manually mark out an ellipse as boundary of the
sphere. Pixels on the ellipse correspond to 3D points where
the viewing direction is tangent to the sphere. Assuming
a pixel on the ellipse has a homogeneous coordinate x,
then its corresponding viewing direction is v = K™ 'x,
where K is the camera intrinsic matrix. Given the known
radius r of the sphere, the distance from sphere center C
to a line is ||C — (vv')C| = r. Then C can be estimated
by solving an optimization problem with all pixels on the
ellipse considered. The 3D position of specular point on the
mirror sphere is denoted as P ;. We then denote the specular
point in the captured image as p;, thus the ray starting
from p; is K_lpj. P, is found by intersecting K_lpj with
the sphere, whose 3D points are determined by the sphere
center C and radius r.

Solving positions of all LEDs are performed by finding
an optimal rigid transformation that maps all LED bulbs
from the world coordinate to the camera coordinate. De-
noting the positions of all LEDs are {Q1,Q2,- - ,Qos} in
the world coordinate system, the only set of parameters to
be estimated will be a rigid transformation {R, T} which
transforms Q ; to its position Q; in the camera coordinate
system. We then define the following cost function:

96
fR,T) =) dist(RQ; + T,1;,P;). 1)
j=1
Here the direction 1; is determined as the reflection of
K‘lpj about np,;, which is the surface normal direction at
P;, and dist(Q, 1, P) is the squared distance from the light
source Q to a line passing the point P with direction 1:

dist(Q,L,P) = |[Q—P — (11")(Q — P)|. @)

This is a non-linear Least Squares problem that can be
solved by Matlab function ‘Isqnonlin’. Such a simultane-
ous estimation to all LED positions is more robust than
calibrating each LED one by one, due to the hard con-
straint from accurately measured positions of all LED bulbs
{Qh Q27 SRR Qgﬁ} when designing the light frame.

7. Please refer to the supplementary material for an illustration of the
coordinate system and notations.
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3.3 Obtaining ‘ground truth’ shapes

We use the Rexcan CS scanner synchronized with the TA-
300 turn table (such a combination is denoted as Rexcan
CS+). The scanner is based on structured light technology,
which is claimed to produce 3D point cloud with point
spacing in the interval of [0.035,0.2lmm and the surface
noise lower than 0.01mm. We equip the scanner with two
200mm lens whose FOV is 150° x 105° x 185° (width,
height, diagonal); such a set of lens allows scanning with the
point spacing as 0.097mm. The turn table has a diameter
of 30cm; the diameters of our objects are around 10cm so
that they could be placed at the center of the turn table
and completely captured within the FOV of the scanner’s
cameras.

The turn table can perform two-axis movement, which
allows it to rotate for +180° and swing for £40°. We pro-
gram the turn table to move at a step of 20° for rotation and
a step of 10° for swing, so in each round of scanning task
the object is scanned for 18 x 9 = 162 times automatically.
The eZScan 7 software affiliated with the scanner performs
an automatic registration to all scans and merge them as a
complete mesh. We check histograms of registration error
from the scanner’s output, and observe that the average
distance is usually at the order of 0.01mm?®. Considering the
sizes of our objects are at the order of 10cm, the registration
error is low enough to provide us a sufficiently accurate
shape. We perform spray coating to highly specular objects
like (READING) and (HARVEST) before scanning. Finally,
we have obtained 3D meshes in which no visible holes
or bumps are observed from the frontal view for surface
normal calculation.

3.4 Shape-to-image alignment

After the 3D shapes are scanned and repaired, we need to
find the shape-to-image alignment that transforms the 3D
shape from the scanner coordinate system to the photomet-
ric stereo image coordinate system. Such registration is not
an easy task, since it requires establishing correspondence
between a textureless 3D shape and a 2D image. We cannot
access the raw data of the commercial scanner we used
for calibration, so that registering the shape and image
coordinate system from camera calibration like [124-126] is
not feasible. As an alternative, we use the mutual informa-
tion method [127] in Meshlab, which has been adopted in
[128] to perform the similar alignment task. We find such
a registration task could be performed in a much more
stable way if we replace the 2D image with its normal map,
because surface normal consistency is a key feature used
by such an alignment method [127]. We provide the normal
map estimated by a state-of-the-art method that deals with
general BRDFs [14] as the reference image. The camera
used to capture photometric stereo images is geometrically
calibrated, so its intrinsic parameters are fixed input for
the alignment algorithm and only the extrinsic parameters
(rotation, translation, and a uniform scaling) are required
to be estimated, which makes the automatic alignment
much more reliable. Meshlab’ provides an easy-to-use Ul

8. Please refer to the supplementary material for a picture of the
scanning setup and an example of the scanner’s output.
9. http:/ /meshlab.sourceforge.net/
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to operate the 3D shape, so that we can interactively rotate,
translate, and scale the 3D shape to a roughly consistent
position with the reference normal map. Then we apply the
automatic alignment algorithm in [127] until it converges to
a stable solution.

We use synthetic experiments to verify the accuracy
of such alignment procedure, and find that the automatic
alignment converges quite stably in synthetic case. By test-
ing several shapes from the Stanford 3D Scanning Repos-
itory, we observe an average angular error between the
aligned and true normal maps about 1° for a smooth surface
like the BUNNY and more than 3° for a complicated surface
like the HAPPY BUDDHA'?. However, real data contain noise
from camera calibration, lens distortion, and other unex-
pected sources, we find for objects with large depth varia-
tion (in particular POT1, POT2, and BUDDHA), the automatic
alignment results are obviously sub-optimal even if we tried
our best to provide good initialization. Therefore, we have
to manually adjust the 3D shape by carefully rotating and
translating it in minimum steps allowed by Meshlab based
on the automatic alignment result. Upon finishing a single
step of manual operation, we compare the normal map
rendered from the aligned shape and the reference normal
map by closely checking every small feature on both normal
maps, until all parts are aligned with subpixel precision'!.
The code and instruction of our alignment procedure are
available on our project website.

4 QUANTITATIVE BENCHMARK RESULTS

Our evaluation criteria is based on the statistics of angular
error. For each pixel, the angular error is calculated as
arccos(ng n) in degrees, where ng and n are ‘ground truth’
and estimated normals respectively. In addition to the mean
angular error, which is a commonly adopted metric in pa-
pers surveyed in Section 2, we also calculate the minimum,
maximum, median, the first quartile, and the third quartile

of angular errors for each estimated normal map'“.

4.1

We evaluate and compare non-Lambertian photometric
stereo methods summarized in Table 1, i.e., BASELINE
[1]1, WG10 [9], IW12 [10], GC10 [2], AZ08 [11], ST12 [12],
HM10 [13], ST14 [14], and IA14 [15]. We choose these meth-
ods because they cover most categories of non-Lambertian
methods and achieve state-of-the-art performance. For all
evaluated methods, we use the parameters provided in the
original codes or suggested by the original papers. The
evaluation results" are summarized in the first and second
rows of Figure 2.

The BASELINE [1] method has the largest errors in most
data. When sparse outliers could be efficiently removed,

Evaluation for non-Lambertian methods

10. Please refer to the supplementary materials for complete details
of synthetic evaluation.

11. An example of alignment with and without manual adjustment
is provided in the supplementary material

12. All evaluations in this section are conducted using the ‘DiLiGenT”
main dataset, and the evaluation results using the test dataset are in the
supplementary material.

13. Estimated normal maps and difference maps w.r.t.’ground truth’
for all objects and methods are in the supplementary material.
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Fig. 2. Benchmark results for calibrated non-Lambertian (from BASELINE to (40%, 60%)) and uncalibrated (from AM07 to Opt. G) photometric
stereo: Each subplot shows the results by one evaluated method for each data; the X-axis is the ID of data w.r.t. the main dataset in Figure 1, and
the Y-axis is the angular error in degrees; the statistics of angular errors for all pixels per normal map are displayed using the box-and-whisker plot:
The red dot indicates the mean value, the black dot is the median, the top and bottom bounds of the blue box indicate the first and third quartile
values, and the top and bottom ends of the vertical blue line indicate the minimum and maximum errors.

WG10 [9] and IW12 [10] show improvement on objects
including a dominant Lambertian component (BALL, CAT,
POT1). But they cannot handle broad and soft specular-
ity well (POT2, COW). Adopting a mixture of the Ward
model, GC10 [2] produces superior results on objects with
broad and soft specularity (POT2, COW). Its performance
drops on objects with complicated spatially-varying BRDFs
(GOBLET). Further, the mixture model fitting might suffer
from some local minima as indicated by the relatively large
errors in some objects (BUDDHA, READING). The bivari-
ate BRDF constraint from AZ08 [11] consistently achieves
moderate accuracy on all data, and performs better when
the highlight is sparser or weaker (BALL, BEAR). ST12 [12]
suffers from large error when the BRDF is not 1D monotonic
(BALL, BEAR), but achieves best results among all evaluated
methods on one challenging example (COw), where its
assumption is satisfied. HM10 [13] works reasonably well
for monotonic reflectance described by a single lobe BRDF
(GOBLET), but not for the mixture of diffuse and specular
components (BEAR, POT2). In general, the two most recent
methods ST14 [14] and IA14 [15] show best performance
for most data. All evaluated methods show large errors in
concave areas (HARVEST), due to frequent cast shadow and
interreflection.

A position threshold method: Non-Lambertian phe-
nomena such as shadows and specular highlights are the
main problems for calibrated photometric stereo. Since
shadows and highlights are often associated with dark and
bright pixels, we could simply sort pixels by their intensities
and discard shadows and highlights as bottom and top
ranked observations respectively. The classic photometric
stereo (BASELINE [1]) can be safely applied once these non-
Lambertian observations are largely discarded. Such a strat-
egy has been used in many non-Lambertian methods (e.g.,
WGI10 [9], GC10 [2], ST14 [14], IA14 [15]) as initialization.

We experiment this simple position threshold method
by setting the position thresholds for shadow and high-

light among Tjou {0%,10%, - - ,40%} and Thign =
{100%, 90%, - - - ,60% } respectively. The benchmark results
are summarized in the second row of Figure 2. It is interest-
ing to note that a narrower interval produces more accurate
normal estimates on most of the data. In particular, the
tightest thresholding (Tjow = 40%, Thigr, = 60%) produces
comparable results to state-of-the-art methods ST14 [14] and
1A14 [15].

Observations: High-quality photometric stereo for com-
plicated BRDFs (COW), spatially-varying materials (GOB-
LET), and concave shapes (READING, HARVEST) is still chal-
lenging. Methods exploiting general reflectance properties
such as symmetry or monotonicity often require far more
input images than the BASELINE [1]. Non-Lambertian pho-
tometric stereo also involves extensive computation, and all
evaluated methods here take much more memory and com-
putation resources than the BASELINE [1]. Computationally
efficient non-Lambertian photometric stereo methods using
a small number of images are still missing.

4.2 Evaluation for uncalibrated methods

We evaluate and compare recent uncalibrated methods sum-
marized in Table 2, ie., AMO07 [3], SM10 [16], PF14 [17],
and WT13 [18], plus a manifold embedding based method
LM13 [19]. These methods so far are evaluated by their
consistency with calibrated methods. Using our dataset with
‘ground truth’ shapes, we can directly evaluate the accuracy
in surface normal directions. To fairly evaluate and compare
AMO7 [3], SM10 [16], and PF14 [17], we start from the
same GBR-distorted normal map that is generated from the
code of PF14 [17]. Unlike these three methods, WT13 [18]
applies diffuse-specular separation [129] beforehand and
LM13 [19] is not specific to GBR distortion, so we simply
take their complete system for evaluation. We summarize
the evaluation results in the bottom row of Figure 2.

The uncalibrated methods produce much larger errors
than the calibrated ones especially for non-Lambertian ma-
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terials. AMO7 [3] and SM10 [16] only produce reasonable
results on near Lambertian objects (BALL, POT1, BEAR).
AMO7 [3] assumes piecewise constant albedo, and is sen-
sitive to objects with smoothly varying texture (CAT). SM10
[16] requires albedo based segmentation and hence fails
on objects with high-frequency material changes (GOBLET).
Though PF14 [17] is designed for Lambertian surfaces, it
shows excellent robustness and tolerance to non-Lambertian
objects (POT2, BUDDHA, COW). Its average error for all test
data is the smallest. The specular reflection based method
WT13 [18] outperforms other methods on materials with
broad and soft highlights (BEAR, POT2, BUDDHA, COW).
Its performance deteriorates when the specular reflection is
weak (CAT) or spatially-varying (GOBLET, HARVEST) and it
suffers from catastrophic failure when diffuse-specular sep-
aration is poor (READING). The performance of LM13 [19] is
poor in our evaluation, partially due to its requirement on
uniformly distributed directional lighting.

We further evaluate the linearly-distorted and GBR-
distorted normals, which are inputs to auto-calibration. We
solve the optimal linear transformation A and GBR trans-
formation G by registering the distorted normals to the
‘ground truth” normals. The mean angular errors between
the registered and ‘ground truth’ normals are reported as
Opt. A and Opt. G for linearly- and GBR-distorted normals
respectively. Both results show surprisingly large residual
errors, which suggests a more robust method is needed for
recovering the pseudo-normal S (up to A) and S (up to G).

Observations: Uncalibrated photometric stereo is still a
very difficult problem for real-world objects and a major
bottleneck is from the widely adopted factorization step [55]
which is designed for Lambertain materials. Pre-processing
the data by using outlier rejection methods [9, 10] can only
solve the problem in a limited scale, since they need to
assume the existence of a dominant Lambertian component.
LM13 [19] presents a successful trial to avoid this factor-
ization for general BRDFs, but it is largely limited by the
requirement of uniformly distributed lighting. Exploring
general BRDF properties and how to accurately estimate
the pseudo-normal for non-Lambertian objects could be
interesting future topics. In terms of resolving the GBR
ambiguity, it might be interesting to combine the strength of
diffuse reflection based method (e.g., PF14 [17]) and specular
reflection based method (e.g., WT13 [18]).

4.3 Evaluation for varying lighting distribution

We select nine subsets from our complete set of 96 different
lightings, as shown on the left of Figure 3, to evaluate
how non-Lambertian and uncalibrated photometric stereo
perform under varying lighting distribution. Lighting dis-
tributions ‘A’, ‘B’, and ‘C’ contain 12 lights with increasing
angular variations; small angular variation is desired when
designing a compact device, but it also brings larger errors
from various noise origins [130]. Lighting distributions ‘D’,
‘E’, and ‘F’ use 36 lights; they are all biased distributions
with all lights concentrated in part of the hemisphere. Light-
ing distributions ‘G’, ‘H’, and ‘I’ use randomly distributed
lights with increasing numbers as 12, 36, and 72. We choose
to evaluate non-Lambertian methods TW12 [10] (outlier
rejection), GC10 [2] (fitting an analytic model), position
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thresholdings of (20%, 80%) and (40%, 60%) (initial results
for ST14 [14] and IA14 [15], which show similar performance
to their final results) in addition to the BASELINE [1]; for
uncalibrated methods we show results of PF14 [17] (best
performance) and the ideal case of Opt. A.

We calculate the mean angular error for each object
first, and then plot the statistics of these ten mean values
per lighting distribution in Figure 3. From the results of
calibrated methods, we verify that too small angular vari-
ation ("A’) and biased lighting distributions (‘D’, ‘E’, and
‘F’) should be avoided for all evaluated photometric stereo
methods here. If the number of lights is small, a too narrow
threshold (‘G’) causes obviously large errors, but such a
narrow threshold shows best performance when enough
lights are given (‘I'). To ensure reliable initialization for
methods using low-frequency BRDF properties like ST14
[14] and IA14 [15], capturing data with nearly 100 different
lightings is recommended, but the requirement on lighting
distribution is less important, since 72 random lights show
similar performance to 96 lights on a regular grid. If only
a dozen of lights are used, fitting an analytic BRDF as
GC10 [2] would be the optimal choice, since it takes all
measured data into computation. Uncalibrated methods are
generally much more sensitive to lighting numbers and
distributions. Though for the ideal case of Opt. A only
one type of biased distribution causes problems, the state-
of-the-art uncalibrated method like PF14 [17] significantly
drops in performance when fewer lights are used, especially
when the distribution is biased. Increasing the number of
lights and maintaining a relatively uniform distribution are
important factors to run uncalibrated methods reliably.

4.4 Regional error analysis

We further investigate how normal estimates distribute in
different regions that might cause higher angular errors, in
particular attached shadow, cast shadow, and interreflection.
To identify these regions, we render images with the same
camera setup of our data capture using the Mitsuba ren-
derer' given our ‘ground truth’ normal map. The lighting
distribution is fixed the same as the 96 directional lights
in the dataset throughout all experiments here. For all
renderings, we fix the BRDF as the ‘roughplastic’ material
provided in Mitsuba, with ‘alpha’ (roughness) fixed as 0.2.
The attached and cast shadow regions could be easily iden-
tified from the rendered direct-only images. We then enable
the global illumination by setting the ‘maxDepth” as 5 in
the path tracer, and the pixels whose differences are greater
than 10% of the corresponding direct-only intensities are
indicated as interreflection regions.

Given the regional labels (a binary number for each
pixel), we introduce the error inducing rate caused by at-
tached shadow, cast shadow, and interreflection as the
summation of labels across all lighting directions and then
normalize them to [0, 1] for each pixel. With a bit abuse of
concept, we further introduce the error inducing rate caused
by elevation angle of surface normal’® and minimum half
angle (6, see definition in Table 1) across all lightings to
further evaluate the influence of pixels near the occluding

14. https:/ /www.mitsuba-renderer.org/
15. Varying in the range of [0, 5] from the equator to the north pole.
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Fig. 3. Evaluation results for varying lighting distribution: Each subplot (right) shows the statistics of mean angular errors for all ten objects per
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Fig. 4. Visualization of five types of error inducing rates for READING.

boundary and degree of specularity. Both types of angular
values in [0, 7] are normalized to [0, 1] for consistency. An
example'® visualization of error inducing rate is provided
in Figure 4. Now we can plot the angular errors varying
with these five types of error inducing rates for each object
(except for BALL); for all the same rate value observed at
different pixels, we take the median of their angular errors
as the current rate. We also provide the average angular
errors of all pixels as a reference. The median curves'” of
all objects from BASELINE [1], WG10 [9], GC10 [2], ST14
[14], position thresholdings of (40%,60%), and PF14 [17]
are shown in Figure 5.

Observations: The errors from both shadow and in-
terreflection show a clear increasing trend w.r.t. the corre-
sponding error inducing rates. The difference is that shad-
ows ‘drastically’ increase the errors, while interreflections
show a ‘calmly’ negative effect, which is a bit against in-
tuition that expects interreflection might be the main cause
of larger errors. Elevation angles closing to zero and half
angles closing to %18 include many pixels near the occlud-
ing boundary, and they show quite large errors. Mirror-
like strong specularity is mainly observed when elevation
angles approach top of the sphere (viewpoint) or half angles
approach zero (normal bisects the lighting and viewing
direction); in these regions, methods assuming dominant
Lambertian reflectance like WG10 [9] and PF14 [17] show
larger errors, while recent non-Lambertian methods like
GC10 [2] and ST14 [14] efficiently deal with such errors
susceptible to specularity. It is interesting to note that ro-

16. Please refer to the supplementary material for the complete
results of all objects.

17. The complete results for all objects and methods evaluated in
Figure 2 are in the supplementary material.

18. Our light distribution concentrates around the north pole of the
sphere (please refer to the left part of Figure 3), so the half vectors h
also concentrate around top of the sphere.
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Fig. 5. Angular error in degrees (Y -axis, median values of all objects)
varying with five types of error inducing rates (X-axis); the black hori-
zontal line is the average value of all pixels.

bust methods like WG10 [9] shows slight advantage in
reducing the errors near occluding boundary and caused
by interreflection. The analysis here reveals that shadows
and pixels near occluding boundary worth special treatment
to avoid large angular errors, however it might not worth
making the BRDF model over-complicated to explicitly deal
with interreflection. Existing non-Lambertian methods are
quite effective in reducing the impact from specularity, and
outlier rejection has unique contribution to lowering errors
near boundary or caused by interreflection. Future methods
should consider their joint force to achieve even higher
performance.
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5 CONCLUSION

We surveyed recent photometric stereo methods according
to our taxonomy focusing on non-Lambertian and uncali-
brated photometric stereo algorithms and presented photo-
metric stereo images dataset with carefully calibrated light-
ing conditions as well as scanned and registered ‘ground
truth” shapes (normals). Eight recent non-Lambertian photo-
metric stereo methods and five uncalibrated methods have
been quantitatively evaluated and compared using our data.

Challenges: Our evaluation demonstrates that although
existing methods can efficiently deal with non-Lambertian
materials with sparse or broad speculiarty, metal-like mate-
rials are still challenging, which demand more specific re-
flectance modeling. The pixels frequently falling into shad-
ows and near occluding boundaries often induce larger an-
gular errors than specularity and interreflection, so pertinent
solutions to them may benefit in lowering the average error.

Limitations: We have tried to include surfaces with
more delicate structures, but the scanned geometry looks
more blurred than photometric stereo results'’. Such a
scanned shape cannot be used to evaluate photometric
stereo. Though we have tried our best in achieving shape-
to-image alignment, our ground truth normal is still not the
real ground truth of surface normal measurements.
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