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Abstract

In action prediction (early action recognition), the goal

is to predict the class label of an ongoing action using its

observed part so far. In this paper, we focus on online ac-

tion prediction in streaming 3D skeleton sequences. A dilat-

ed convolutional network is introduced to model the motion

dynamics in temporal dimension via a sliding window over

the time axis. As there are significant temporal scale varia-

tions of the observed part of the ongoing action at different

progress levels, we propose a novel window scale selection

scheme to make our network focus on the performed part of

the ongoing action and try to suppress the noise from the

previous actions at each time step. Furthermore, an activa-

tion sharing scheme is proposed to deal with the overlap-

ping computations among the adjacent steps, which allows

our model to run more efficiently. The extensive experiments

on two challenging datasets show the effectiveness of the

proposed action prediction framework.

1. Introduction

Action prediction is to recognize the class label of an on-

going activity when only a part of it is perceived. Predicting

actions before they get completely performed is a subset of a

broader research domain on human activity analysis. It has

attracted a lot of attention due to its wide range of applica-

tions in security surveillance, human-machine interaction,

patient monitoring, etc [23, 4].

Most of the existing works in literature [23, 27, 32] fo-

cus on action prediction in the well-segmented videos, for

which each video contains only one action instance. How-

ever, in practical scenarios, such as online human-machine

interaction systems, plenty of action instances are contained

in a streaming sequence, which are not segmented. In this

paper, we address this more challenging task: “online action

prediction in untrimmed video”, i.e. we want to recognize
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Figure 1. Fig (a) shows an untrimmed streaming sequence con-

taining multiple action instances. We need to recognize the current

ongoing action at each time step when only a part of it (eg. 10%) is

performed. Fig (b) depicts our SSNet for online 3D action predic-

tion. At time t, only a part of the action waving hand is observed.

Our SSNet selects the convolutional layer #2 rather than #3 for

prediction, as the perception window of #2 mainly covers the per-

formed part of current action, while #3 involves too many frames

from the previous action which can interfere the prediction at t.

the current ongoing action from the observed part of it at

each temporal step of the data streaming, which can include

multiple actions, as shown in Figure 1(a).

Biological studies [25] show that the skeleton data is in-

formative enough for representing human behaviors, even

without appearance information [80]. Human activities are

naturally performed in 3D space, thus 3D skeleton data is

suitable for representing human actions [46]. These 3D

skeleton information can be easily and effectively acquired

in real-time with the low-cost depth sensor, such as Kinec-

t [59, 78]. As a result, activity analysis with 3D skeleton

data becomes popular [19, 49, 62, 41, 81, 57, 43] due to

its succinctness, high level representation, and robustness

against variations in viewpoints, clothing textures, illumi-

nation, and background [11, 42, 23].

In this paper, we investigate real-time action prediction
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with the continuous 3D skeleton data. To predict the class

label of the current ongoing action at each temporal step,

we adopt a sliding window method over the frames of the

streaming skeleton sequence, and the data frames inside the

window are used to perform action prediction at each step.

Sliding window based design has been widely used in

a series of computer vision tasks, such as object recog-

nition [47], pedestrian detection [12], activity detection

[48, 56, 77, 22], etc. Most of these works adopt one fixed

scale or combine multi-scale multi-pass scans at each slid-

ing position. However, in our online action prediction task,

we need to predict the ongoing action at each observation

ratio, while there are significant temporal scale variations in

the observed part of the ongoing action at different progress

levels. This makes it quite difficult to determine the scale of

the sliding window. In addition, the untrimmed streaming

sequence may contain multiple action instances (see Fig-

ure 1(a)). The order of the actions can be arbitrary, and the

duration of different instances are often not the same. More-

over, the observed (per whole) ratio of the ongoing action

changes over time, which makes it even more challenging

to obtain a proper temporal window scale for online predic-

tion. For example, at an early temporal stage, it is beneficial

to use a relatively small scale, because the larger window

sizes may include frames from the previous action instance

which can mislead the recognition of the current instance.

Conversely, if a large part of the current action has been al-

ready observed, it is beneficial to use a larger window size

to cover more of its performed parts in order to achieve a

reliable prediction.

To deal with the above-mentioned challenges, we pro-

pose a novel Scale Selection Network (SSNet) in this paper

for online action prediction. Rather than using a fixed s-

cale or multi-scale multi-pass scans at each time step, we

supervise our network to choose the proper window scale

dynamically at each step to cover the performed part of the

current action instance. In our method, the network predict-

s the ongoing action at each frame. Beside predicting the

class label, it also regresses the temporal distance to the be-

ginning of current action instance, which indicates the per-

formed part of the ongoing action. Thus, at the next frame,

we can utilize it as the temporal window scale for class pre-

diction.

Specifically, we apply convolutional analysis in temporal

dimension to model the motion dynamics over the frames

for 3D action prediction. A hierarchical architecture with

dilated convolution layers is leveraged to learn a compre-

hensive representation over the frames within each percep-

tion window, such that different layers in our SSNet corre-

spond to different temporal scales, as shown in Figure 1(b).

Therefore, at each time step, our network selects the proper

convolutional layer which covers the most similar window

scale regressed by its previous step. Then the activations of

this layer can be used for action prediction. The proposed

SSNet is designed to select the proper window in order to

cover the performed part of current action and tries to sup-

press the noisy data from the previous ones, hence it can

produce reliable predictions at each step. To the best of our

knowledge, this is the first convolutional model with explic-

it temporal scale selection as its fundamental capability for

handling scale variations in online activity analysis.

In many existing methods which use sliding windows,

the computational efficiencies are relatively low due to the

overlapping design and exhaustive multi-scale multi-round

scan. In our method, the action prediction is performed with

a regressed scale at each step, which avoids multi-pass scan.

So the action prediction and scale selection are performed

by a single convolutional network very efficiently. More-

over, we introduce an activation sharing scheme to deal

with the overlapping computations over different time step-

s, which makes our SSNet run very fast for real-time online

prediction.

We summarize the main contributions as: (1) We study

the new problem of real-time online action prediction in

continuous 3D skeleton streams by leveraging convolution-

al analysis in temporal dimension. (2) The proposed Scale

Selection Network is capable of dealing with the scale vari-

ations of the observed portion of the ongoing action at dif-

ferent time steps. We propose a scale selection scheme to let

our network choose the proper temporal scale at each step,

such that the network can mainly focus on the performed

part of current action, and try to avoid the noise from the

previous action samples. (3) Our framework is very effi-

cient for online action analysis due to the computation shar-

ing over different time steps. (4) We perform action predic-

tion with our SSNet which is end-to-end trainable, rather

than using expensive multi-stage or multi-network design

at each step. (5) Our method achieves superior performance

on two challenging datasets for 3D activity analysis.

2. Related Work

3D Action Recognition. After the development of cheap

and easy-to-use depth sensors, such as Kinect and XTion,

human action recognition in 3D skeleton sequences be-

comes very popular [1, 79], and a series of hand-crafted

features [72, 63, 75, 64, 52, 13, 70, 67] and deep learning

based approaches [11, 83, 51, 30, 42, 26] have been pro-

posed. Most of the existing 3D action recognition methods

[63, 51, 57, 69, 24, 66, 10, 29] take fully observed segment-

ed videos as input (each sample contains one full action in-

stance), and output a class label. The proposed online 3D

action prediction method takes one step forward in dealing

with numerous action instances occurring in the untrimmed

sequences, for which the current ongoing action can be part-

ly observed.

There are very limited number of 3D action recognition
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methods [3] which attempted untrimmed sequences. Differ-

ent from these works, the proposed SSNet framework pre-

dicts the class of the current ongoing action by utilizing its

predicted observation ratio.

Action Prediction. Recognizing (predicting) an action

before it is fully performed has attracted a lot of attention re-

cently [31, 50, 4, 71, 36, 27, 28]. Ryoo et al. [50] represent-

ed each action as an integral histogram of spatio-temporal

features for activity prediction. Li et al. [37] designed a pre-

dictive accumulative function. Ke et al. [27] extracted deep

features in optical flow images for activity prediction.

Recently, Hu et al. [23] explored to incorporate 3D

skeleton information for real-time action prediction in well-

segmented sequences, i.e., each sequence includes only one

action. A soft regression strategy was introduced in their

work for action prediction. However, their approach was

not suitable for online 3D action prediction in untrimmed

continuous sequence, which contains multiple action in-

stances.

Action Analysis in Untrimmed Videos. Beside the on-

line action prediction task, the problem of temporal action

detection [68, 73, 48, 33, 7, 53, 68, 14, 54, 16, 15, 65, 82]

also copes with untrimmed videos. Several methods at-

tempted online detection [38], while most action detection

approaches are developed for handling offline mode which

conducts detection after observing the whole long sequence

[48, 35, 56]. Our task is different from action detection, as

action detection mainly addresses accurate spatio-temporal

segmentation, while action prediction focuses more on pre-

dicting the class of the current ongoing action timely from

its observed part, even when only a small ratio of it is per-

formed.

The sliding window based design [77, 53, 2, 22] and ac-

tion proposals [76] have been adopted for action detection.

Zanfir et al. [77] used a sliding window with one fixed scale

(obtained by cross validation) for action detection. Shou et

al. [55] adopted multi-scale windows for action detection

via multi-stage networks. Differently, in our action pre-

diction task, determining the scale of the window is chal-

lenging due to the scale variations of the observed part of

the ongoing action. Also, instead of using one fixed scale

[77] or multi-scale multi-pass scans [55, 84], we propose a

novel SSNet for online prediction, which is supervised to

choose the proper window for prediction at each temporal

step. Moreover, the redundant computations are efficiently

shared over different steps in our method.

3. SSNet: Scale Selection Network

In this section, we introduce the proposed network ar-

chitecture, Scale Selection Network (SSNet), for online 3D

action prediction. The overall schema of this method is il-

lustrated in Figure 2. In the proposed network, a hierarchy

of one dimensional convolutions are performed in temporal

domain to model the motion dynamics over the frames. In-

puts of SSNet are the frames within a time window at each

time step. In order to tackle the scale variation in the partial-

ly observed action at different time steps, a scale selection

method is proposed, which enables our SSNet to focus on

the observed part of the ongoing action by picking the most

suitable convolutional layers.

3.1. Temporal Modeling with Convolutional Layers

Recently, convolutional networks [34, 9, 18] have proven

their superior strength in modeling the time series data

[60, 8, 61]. For example, van den Oord et al. [60] proposed

a convolutional model, called WaveNet, for audio signal

generation, and Dauphin et al. [8] introduced a convolution-

al network for time series in language sequential modeling.

Inspired by the success of convolutional approaches in the

analysis of temporal sequential data, we leverage a stack of

1-D convolutional layers to model the motion dynamics and

context dependencies over the video sequence frames, and

inspired by the WaveNet model, we propose a network for

the 3D action prediction task. Specifically, previous work-

s [58, 5] suggest that there are often hierarchical structures

in the motion patterns over temporal axis, which play an

important role in action analysis, hence, we design our con-

volutional model with a hierarchical structure.

In our method, the convolutional model is used to learn

a comprehensive representation over all the frames with-

in a temporal window, and then this representation can be

used for action prediction. The main building blocks of our

model are dilated causal convolutions. Causal design [60]

indicates action prediction at time t is based on the avail-

able information before t (including t) without using future

information. Dilated convolution [74] means the convolu-

tional filter works over a larger field than the filter’s length,

and some input values inside the field are skipped with a

certain step.

This is intuitive for action analysis, since the running

time for longer actions can be very long and the convolu-

tional network needs to be able to cover a large receptive

field. Applying standard convolution, the network needs

more layers or larger filter sizes to achieve a broader recep-

tive field. However, both of these significantly increase the

number of model parameters. Dilated convolution, support-

s expansion of the receptive field very efficiently, without

bringing more parameters [74]. In addition, it does not need

any extra pooling operations, thus it can well maintain the

ordering information of the inputs [74]. Therefore, dilated

convolution is suitable for the task of action prediction.

The proposed model is depicted in Figure 2. Each con-

volution operation is performed over two input nodes with

the dilation degree set to d, where d = 1 represents the

standard convolution. The dilation degree increases expo-

nentially over the layers in the network, i.e., we set d to
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Figure 2. Schema of the proposed SSNet for action prediction over

the temporal axis. Solid lines denote the SSNet links activated at

current step t, and dashed lines indicate the links activated at other

time steps. Here we only show 3 convolutional layers for clarity.

At each step, SSNet predicts the class (ĉt) of the ongoing action,

and also estimates the distance (ŝt) to current action’s start point.

Calculation details of ĉt and ŝt are shown in Figure 3. Convolu-

tional filters are shared at each layer, yet different across layers.

1, 2, 4, 8, ... for Layers #1, #2, #3, #4, ..., respectively.

This design results in an exponential expansion of the per-

ception scale across network layers. For example, the con-

volutional operation node C(t, 3) in Figure 2 corresponds

to a large scale of temporal window (8 frames: [t − 7, t]),
while the perception temporal window of C(t, 2) is [t−3, t]
(4 frames). Here C(t, l) denotes the output activation of the

dilated convolutional node in Layer #l (l ∈ [1,L]) at time t,

and L is the number of convolutional layers in our network.

Note that any frame in the window [t − 7, t] can be per-

ceived by the node C(t, 3) with the hierarchical structure.

This shows how the field of view expands over the layers in

our network, while the resolution of input is not changed.

3.2. Scale Selection Scheme

In the streaming sequences, we can use the frames in a

temporal window [t − s, t] (with scale s) to perform action

prediction for the time step t. However, finding a proper

temporal scale s for different steps and inputs is not easy.

At the early stages of an action, a relatively small scale

is preferred, because larger windows can involve too many

frames from the previous action, which interfere the recog-

nition. On the contrary, if a large ratio of the action is ob-

served (especially when the duration of this action is long),

to obtain a reliable prediction, we need a larger s to cover

more of its observed parts. This implies the importance of

finding a proper scale value at each time step, rather than

using a fixed scale at all steps.

In this section, we propose a scale selection scheme for

online action prediction. The core idea is to regress a prop-
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Figure 3. Details of our SSNet which jointly predicts the class label

ĉt and regresses the start point’s distance ŝt for the current ongo-

ing action at time t. If the regressed result ŝt−1 at the previous

time step (t − 1) indicates that Layer #3 corresponds to the most

proper window scale (i.e., l
p

t = 3), then our network will use Lay-

ers #1-3 for class prediction, while the activations from the layers

above #3 are dropped (marked with cross in the figure). In this fig-

ure, we only show a subset of convolutional nodes of our SSNet,

and other ones in the hierarchical structure (depicted as the solid

lines in Figure 2) are omitted for clarity. The parameters of the

convolutional layers and FC (fully connected) layers in our SSNet

are trained jointly in an end-to-end fashion.

er window scale at each time step, which will be used in

its next step, in which the network can use this value to

choose the proper layer for action prediction. At each step,

as shown in Figure 2, the class label (ĉt) of the current ac-

tion is predicted, and the temporal distance (ŝt) between the

current action’s start point and the current frame is also re-

gressed. This distance indicates the performed part of the

current action is assumed to be [t− ŝt, t] at step t.

Assume we have obtained the regression result ŝt−1 at

step (t − 1), thus at frame t, our network selects the time

range [(t−1)−ŝt−1, t] for action prediction. Specifically, in

our network design, the nodes in different layers correspond

to different perception window scales, thus we can select the

node from the proper layer to cover the performed part of

the current action. For this proper layer l, we make sure its

perception window’s scale equals to (or slightly larger than)

ŝt−1 +1, while the perception window of its previous layer

(l − 1) is smaller than ŝt−1 + 1. For example, Layer #2 in

Figure 1 is the proper layer in this case.

We use l
p
t to denote the selected proper layer at step

t. Then we aggregate the activations of the nodes C(t, l)
(l ∈ [1, lpt ]) in our network to generate a comprehensive

representation for the selected time range as:

Gc
t =

1

l
p
t

lpt∑

l=1

C(t, l) (1)

Note that we connect multiple layers ([1, lpt ]) together to

compute Gc
t , rather than using l

p
t only. This skip connection

design can speed up convergence and enables the training
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of much deeper models, as shown by [20, 21, 60]. Besides,

it can also help to improve the representation capacity of

our network, as the information from multiple layers corre-

sponding to multiple scales is fused for current action. Fi-

nally, Gc
t is fed to the fully connected layers followed by a

softmax classifier to predict the class label (ĉt) for the cur-

rent time step. As shown in Figure 3, beside predicting the

action class (ĉt), our network also generates a representa-

tion (Gs
t ) to regress the start point’s distance (ŝt):

Gs
t =

1

L

L∑

l=1

C(t, l) (2)

For distance regression, we directly use the top convolu-

tional layer L (together with all the layers below it), which

has a large perception window (generally larger than the

complete execution time of one action), rather than dynam-

ically selecting a layer as in Eq (1). This is due to the es-

sential difference between the regression task and the ac-

tion label prediction task. Start point’s distance regression

can be regarded as regressing the position of the bonding

[45] between the current action and its previous activities,

thus involving information from the previous activity will

not reduce (or even benefit) the regression performance for

current action. Using Eq (2) also implies the distance re-

gression is performed independently at each time step, and

is not affected by the regression results of previous steps.

In object detection domain [39], such as Fast-RCNN

[17], the bounding box of the current object was shown to

be accurately regressed by a learning scheme. Similarly,

the proposed network learns to regress the bounding (start

point) of the current ongoing action reliably.

The regression result produced by the previous step (t−
1) is used to guide the scale selection (with scale ŝt−1 + 1)

for action prediction at the current step t. An alternative

method can be: first regressing the scale ŝt at step t, then

using the scale ŝt to directly perform action prediction for

the same step t. We observe these two choices perform sim-

ilarly in practice. This is intuitive as ŝt−1 + 1 is close to ŝt.

The main difference of these two choices is the scale used

at the beginning of a new action, because if we use the s-

cale regressed by its previous step, the scale used at this

step may be derived from the previous action, which is not

proper. However, at the beginning frame of an action, too

little information of the current action is observed, which

makes prediction at this step very difficult even using the

proper scale (only one frame), thus these two choices still

perform similarly at this step. In the following frames, s-

ince more information is observed and proper scales can be

used, both choices perform reliably. The framework will

be less efficient if regressing for the same step, as the two

tasks (regression and prediction) need to be conducted as t-

wo sequential stages at each time step (cannot be performed

simultaneously).

3.3. Details of Network Structure

Our SSNet has 14 dilated convolutional layers. Specif-

ically, we stack two similar sub-networks with dilation de-

grees (d) : 1, 2, 4, 8, ..., 64 over the layers of each sub-

network, i.e., the dilation degree (d) is reset to 1 at the

beginning of each sub-network, as shown in Table 1. The

motivation of this design is to achieve more variation for

window scales (we obtain 14 different scales from 2 to 255

here). Besides, each sub-network can be intuitively regard-

ed and implemented as a large convolutional module. More-

over, such a structure still guarantees each layer to perceive

all the frames in its perception window without losing in-

put resolutions. With such a design, the perception window

scale of the top layer in our network is 255 frames, which

covers more than 8-second sequence at the frame rate of

common video cameras like Kinect. Generally, the duration

of a full single action in most existing datasets is less than

8 seconds. Thus, the scale 255 is large enough for action

analysis. Even if the whole duration time of an action is

longer than 8 seconds, we believe the classification can be

performed reliably when such a long segment (8 seconds)

of the action has been perceived.

3.4. Activation Sharing Scheme

The proposed framework can be implemented in a very

computation-efficient way. Though both action label pre-

diction and distance regression are conducted on various

window scales at each step, all of the computational step-

s are encapsulated in a single network with a hierarchical

structure, i.e, we do not need separated networks or multiple

scanning passes for action prediction at each step. In addi-

tion, although convolutional operations are performed over

a sliding window at each step, the redundant computation

of overlapping regions among different sliding positions are

avoided. This is due to the design of causal convolution in

our network, and many features (activations of convolution

operations) computed in previous steps can be reused by the

latter steps, which avoids redundant computation.

As shown in Eqs (1) and (2), at time step t, the prediction

and regression are based on the nodes C(t, l), l ∈ [1, lpt ] or

l ∈ [1,L]. Each node C(t, l) is calculated based on only

two input nodes, C(t−dl, l−1) and C(t, l−1), as depicted

in Figure 2. C(t − dl, l − 1) has already been computed at

time step t−dl. Therefore, to obtain C(t, l), we only need to

calculate the activation of C(t, l− 1). Similarly, C(t, l− 1)
can be computed after we get C(t, l − 2).

Though we input a window of frames to SSNet at each

step (t), we only need to calculate the activations of the

nodes in column t of Figure 2, and all other convolution op-

erations in the hierarchical structure can be copied from the

previous time steps. This activation sharing makes our net-

work efficient enough to be used in real-time applications.
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Table 1. Details of the network structure.
Layer index #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14

Dilation degree (d) 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Perception window scale 2 4 8 16 32 64 128 129 131 135 143 159 191 255

Output channels 50 50 50 50 50 50 50 50 50 50 50 50 50 50

3.5. Objective Function

The objective function of our network is formulated as:

ℓ = ℓc(ĉt, ct) + γℓs(ŝt, st) (3)

where ct is the ground truth class label, and st is the ground

truth distance between the start point of the action and

the current frame. γ is the weight for the regression task.

ℓc is the negative log-likelihood loss measuring the differ-

ence between the true class label ct and the predicted re-

sult ĉt at time step t. ℓs is the regression loss defined as

ℓs(ŝt, st) = (ŝt−st)
2. Our objective function is minimized

by stochastic gradient descent.

To train the network, we generate fixed-length clips from

the annotated long sequences with sliding temporal win-

dows. The length of each clip is equal to the perception

scale of the top convolutional layer (255 frames). Each clip

can then be fed to the SSNet. The class prediction is per-

formed using the proper layer, which is chosen based on the

ground truth distance of the start point, in the training phase.

During testing, action prediction is performed frame-by-

frame through a sliding window, and the proper layer for

prediction at each time step is determined by the output dis-

tance regression of its previous step. The ground truth in-

formation of the start point is not used in the testing phase.

4. Experiments

We evaluate our method on two challenging datasets:

the OAD dataset [38] and the PKU-MMD dataset [40].

In both datasets, multiple action instances are contained

in each long video. Beside the predefined action classes,

these datasets also contain frames which belong to the back-

ground activity, thus we add a blank class to represent the

frames in this situation. We conduct experiments with the

following architectures:

(1) SSNet. This is our proposed model for 3D action

prediction, which can select a proper layer to cover the per-

formed part of the current ongoing action at each time step

by using the start point regression result.

(2) FSNet (S). Fixed Scale Network (FSNet) is simi-

lar to SSNet, but the action prediction is directly performed

using the top layer. This indicates scale selection scheme

is not used, and the prediction is based on a fixed window

scale (S) at all steps. We configure the structure to gener-

ate a set of FSNets, such that they have different perception

window scales at the top layer. Concretely, five FSNets with

different fixed scales (S = 15, 31, 63, 127, 255) are evalu-

ated. Note that to make a fair comparison, skip connections

(see Eq (1)) are also used in each FSNet, i.e., all layers (cor-

responding to different scales) in a FSNet are connected as

Eq (1) for action prediction at each step.

(3) FSNet-MultiNet. This baseline is a combination of

multiple FSNets. A set of FSNets with different scales (S =
15, 31, 63, 127, 255) are used for each time step. We then

fuse the results of them, i.e., multi-scale multi-pass design

is used to perform action prediction.

(4) Beside the aforementioned models, we also set an

“ideal” baseline, SSNet-GT. Action prediction in SSNet-

GT is also performed at the selected layer. However, we do

not use the regression result to select the scale, instead, we

directly use the ground truth (GT) distance of the start point

to select the layer for action prediction at each step.

Our model is also compared to other state-of-the-art net-

works for 3D activity analysis:

(1) JCR-RNN [38]. This network is a variant of LSTM,

which models the context dependencies in temporal dimen-

sion of the untrimmed sequences. It obtains state-of-the-art

performance of action detection in skeleton sequences on

some benchmark datasets. A prediction of the current action

class is provided at each frame of the streaming sequence.

(2) ST-LSTM [42]. This network achieves superior per-

formance on 3D action recognition task. We adapt it to our

online 3D action prediction task and generate a prediction

of the action class at each frame of the streaming sequence.

(3) Attention Net [44]. This network adopts an atten-

tion mechanism to dynamically assign weights to different

frames and different skeletal joints for 3D skeleton based

action classification. A prediction of the action class is pro-

duced at each time step.

4.1. Implementation Details

Our experiments are conducted with the Torch7 toolbox

[6]. We train the network from scratch, i.e., network param-

eters are initialized with small random numbers (uniform

distribution in [-0.08, 0.08]). The learning rate, momentum,

and decay rate are set to 10−3, 0.9, and 0.95, respectively.

Residual connections [20] are used over different convolu-

tional layers. GLU [8] is the activation function used for the

convolution operations in our network. The output dimen-

sions of FC1, FC3, FC4, and FC5 in Figure 3 are 50, 50,

50, and 1, respectively. FC2’s output dimension is deter-

mined by the class number of each specific dataset. In our

experiment, γ in Eq (3) is set to 0.01. The above-mentioned

parameters are obtained by using cross validation protocol

on the training sets, and the parameter set giving the opti-

mum performance is adopted.
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Figure 4. Prediction results on (a) OAD and (b) PKU-MMD

datasets. Fig (c) shows comparison of different γ values on OAD.

Due to the dilated convolutional design, the number of

parameters for SSNet is relatively small (∼270K). We train

our network on a single NVIDIA GTX-1080 GPU. We e-

valuate the efficiency of our method for online prediction in

continuous sequence, and the speed reaches 70 fps, which

indicates that our framework responds extremely fast.

4.2. Experiments on the OAD Dataset

The OAD dataset [38] was captured with Kinect v2 in

daily-life indoor environments. It includes 10 actions. The

long video sequences in this dataset correspond to about 700

action instances. The starting and ending frames of each

action are annotated in this dataset. 30 long sequences are

used for training, and 20 long sequences are for testing.

We report the prediction results in Figure 4(a) and Ta-

ble 2(a). In the figures and tables, the accuracy of an obser-

vation ratio p% denotes the average accuracy of the predic-

tions in the observed segment (p%) of the action instance.

Note that the special baseline SSNet-GT performs ac-

tion prediction with the Ground Truth scale at each step,

thus it provides the best results. Our SSNet with regressed

scale even achieves comparable results to this “ideal” base-

line (SSNet-GT), which indicates the effectiveness of our

scale selection scheme for online action prediction at each

progress level. Apart from the “ideal” SSNet-GT model,

our proposed SSNet yields the best prediction results among

all methods at all observation ratios. Specifically, our SS-

Net can even produce a quite reliable prediction (about 66%
accuracy) at the early stage when only a small ratio (10%)

of the action instance is observed.

The performance of our SSNet is much better than FS-

Nets which perform prediction with fixed-scale windows at

each time step. Even fusing a set of FSNets with different s-

cales, FSNet-MultiNet is still weaker than our single SSNet

at all progress levels. This demonstrates that our proposed

scale selection scheme, which guides the SSNet to dynami-

cally cover the performed part of current action at each step,

is very effective for online action prediction.

We also find our SSNet significantly outperforms the

state-of-the-art RNN/LSTM based methods, JCR-RNN [38]

and ST-LSTM [42] which can handle continuous skeleton

sequences. The performance disparity can be explained as:

(1) At the early stages (eg. 10%), our SSNet can focus on

the performed part of current action by using the selected

scale, while RNN models [38, 42] may bring information

from the previous actions which can interfere the predic-

tion for current action. (2) At the latter stages (eg. 90%),

the context information from the early part of current ac-

tion may vanish in RNN model with its hidden state evolv-

ing frame by frame, while our SSNet, which uses convolu-

tional layers to model the temporal dependencies over the

frames, can still handle the long-term context dependency

information in the temporal window. (3) There are hier-

archical structures of the motion patterns in temporal di-

mension [58]. However, RNN/LSTM models do not have

strong ability in modeling this structure. Our SSNet also

outperforms the Attention Net [44] which assigns weights

to differen frames and joints. This indicates the superiority

of our SSNet with explicit scale selection.

4.3. Experiments on the PKUMMD Dataset

PKU-MMD [40] is a large dataset for 3D activity analy-

sis in continuous sequences. Cross-subject evaluation pro-

tocol is used, in which 57 subjects are used for training,

and the remaining 9 subjects are for testing. Considering

the large amount of data, we use the videos which contain

the challenging interaction actions for our experiment, and

sample 1 frame from every 4 frames for these videos. Our

method achieves the best results at all progress levels, as

shown in Figure 4(b) and Table 2(b). Our SSNet outper-

forms other methods significantly, even when only a very

small ratio (10%) of the action is observed. This indicates

our method can produce a more reliable prediction at the

early stage by focusing on the current action, compared to

other methods which do not explicitly consider scale selec-

tion. We also find FSNet with fixed scale at each step is

sensitive to the scale used, as different scales provide very

different results. This further demonstrates that our SSNet,

which dynamically chooses the proper scale at each step to

perform prediction, is effective for online action prediction.

4.4. More Experiments

Evaluation of distance regression. We adopt the metric

SL-Score proposed in [38] to evaluate the performance of

distance regression of our network, which is calculated as

e−|ŝ−s|/d, where s and ŝ are respectively the ground truth

distance and regressed distance to the action’s start point,

and d is the length of an action. For false classification sam-

ples, the score is set to 0. Note that in our SSNet, start point

regression is performed based on the top convolutional lay-

er (see Eq. (2)). We also test an alternative model (we call

it “SSNet*” here), in which the distance regression is per-

formed at the selected layer, which is determined by the re-

gression result of the previous time step (similar to Eq. (1)).

We report the regression performance of SSNet and SSNet*

in Table 3. As the action detection method, JCR-RNN [38],
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Table 2. Performance comparison of prediction accuracies. The last column SSNet-GT is an “ideal” baseline, in which Ground Truth scales

are used for action prediction. We observe our SSNet, which performs prediction with regressed scales, is even comparable to SSNet-GT.
Observation

ST-LSTM Attention Net JCR-RNN
FSNet FSNet FSNet FSNet FSNet FSNet-

SSNet SSNet-GT
Ratio (15) (31) (63) (127) (255) MultiNet

(a) Prediction accuracies on OAD dataset. Refer to Figure 4(a) for more results.

10% 60.0% 59.0% 62.0% 57.7% 62.0% 61.7% 61.2% 57.1% 59.3% 65.6% 65.8%

50% 75.3% 75.8% 77.3% 74.6% 74.0% 75.9% 77.1% 69.9% 77.2% 79.2% 79.5%

90% 77.5% 78.3% 78.8% 75.9% 74.3% 78.6% 78.5% 70.2% 79.7% 81.6% 82.9%

(b) Prediction accuracies on PKU-MMD dataset. Refer to Figure 4(b) for more results.

10% 22.9% 19.8% 25.3% 25.6% 24.6% 21.8% 17.1% 17.1% 22.4% 30.0% 31.4%

50% 63.0% 62.9% 64.0% 61.6% 63.8% 63.6% 54.7% 42.7% 66.4% 68.5% 69.3%

90% 74.5% 74.9% 73.4% 72.8% 72.8% 71.3% 65.4% 55.2% 75.5% 78.6% 79.4%

TimeAction: write

Ground Truth
Regression (10%)
Regression (30%)
Regression (50%)
Regression (70%)
Regression (90%)

10% 30% 50% 70% 90%

Figure 5. An example of the regression results.

also estimates the start point, we also compare our method

with it. The results show that SSNet provides the best re-

gression performance. We also observe the regression result

of SSNet is better than SSNet*. A possible explantation is:

the start point can be seen as the bounding between the cur-

rent action and the previous activities, thus we do not need

to select a layer to only focus on the observed part of cur-

rent action to perform regression, and the information from

the previous action can even help in start point regression.

Thus we perform regression by directly using the top layer.

We also evaluate the average regression errors in the ob-

served segment (p%) in Table 4 on PKU-MMD dataset. The

regression error is calculated as |ŝ− s|. We find our method

regresses the distance reliably. When only a small ratio

(3%) of the action instance has been observed, the average

regression error is 7 frames. The regression becomes more

reliable if more frames (eg, 10%) are observed.

We also show an example of results in Figure 5. It shows

that our SSNet achieves promising regression performance.

Evaluation of network configurations. We configure

the maximum dilation degree and the layer number to gen-

erate a set of SSNets, which have different maximum per-

ception window scales at the top layers. The results in Ta-

ble 5 show that using more layers are beneficial for perfor-

mance as the perception window scale of top layer increas-

es, but the performance of 16 layers is almost the same as

14 layers. A possible explanation is that the duration time

of most actions is less than 255 frames. Besides, 255 frames

are long enough for action analysis. Thus using the SSNet

Table 3. Start point regression performance (SL-Score).
Dataset JCR-RNN [38] SSNet* SSNet

OAD 0.42 0.61 0.69

PKU-MMD 0.61 0.67 0.72

Table 4. Start point regression errors.
Observed Segment 3% 6% 10% 40% 70% 100%

Error (frames) 7 4 3 3 3 3

with 14 layers (maximum window scale 255) is suitable.

We also evaluate the performance of our SSNet with dif-

ferent γ values (see Eq (3)) in Figure 4(c). We observe our

SSNet yields the best performance when γ is set to 0.01.

Frame-Level Classification. As action classification is

performed at each frame, the average classification accura-

cies over all frames are also evaluated, as shown in Table 6.

5. Conclusion

We have proposed the SSNet for online 3D action predic-

tion. A stack of convolutional layers are introduced to mod-

el the dependencies in temporal dimension. A scale selec-

tion scheme is also proposed for SSNet, with which the net-

work can choose a proper layer corresponding to the most

proper scale for action prediction at each step. SSNet shows

superior performance on the evaluated benchmark datasets.
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Table 5. Evaluation of different configurations of SSNet on OAD.
Number of conv. layers 8 10 12 14 16

Max. dilation degree 8 16 32 64 128

Max. perception wind. scale 31 63 127 255 511

Regression (SL-Score) 0.62 0.66 0.68 0.69 0.69

Prediction accuracy (%) 73.4 76.9 78.0 78.7 78.7

Table 6. Frame-level classification accuracies. FSNet (best) de-

notes the FSNet which gives the best results among all FSNets.
Dataset [42] [44] [38] FSNet (best) SSNet

OAD 0.77 0.75 0.79 0.79 0.81

PKU-MMD 0.78 0.80 0.79 0.80 0.82
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