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Abstract— The compressive sensing theory indicates that 
robust reconstruction of signals can be obtained from far fewer 
measurements than those required by the Nyquist theorem. Thus, 
it has great potential in video acquisition and processing in that it 
can tremendously save the complex compression required by 
traditional video coding standards. In this paper, we consider 
reconstruction of compressive-sensed videos and propose a novel 
structured-sparsity model with a dual prediction strategy. This 
structured-sparsity model goes beyond simple sparsity and 
characterizes the intrinsic structure within the transform 
coefficients. Also, it exploits the sparsity of the residual between 
the current patch and its prediction. The prediction process is 
comprised of a dual strategy, which integrates the advantages of 
the ambient pixel domain and the measurement domain. In 
addition, an effective optimization method is designed for solving 
the formulated problem derived from the model. Experiments 
demonstrate that the proposed algorithm outperforms the state-
of-the art methods for compressive-sensed video reconstruction in 
both subjective and objective quality. 
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I. INTRODUCTION 

Compressive sensing (CS) is an emerging technology that 
suggests an intriguing new paradigm for signal acquisition and 
compression. It makes it possible for sparse signals to be 
sampled at a sub-Nyquist rate while ensuring their robust 
reconstruction under certain conditions [1]-[2]. The video 
signal, which has massive spatial and temporal redundancies, 
has good sparse representation in some transform domain. Thus, 
CS is potentially applicable to acquiring and processing the 
video signal. Compared to conventional video processing, 
which requires sophisticated predictive coding after video 
acquisition [1], [4], video compressive sensing integrates 
sampling and compression and tremendously reduces the 
computational resource consumption in the encoder.  

The sampling process is usually in the unit of a block in order 
to reduce the memory burden in the encoder [5].  With very few 
measurements for each block, the burden of acquiring a high 
quality signal for compressive-sensed videos is shifted to the 
decoder side. Thus effective sparse representations of videos 
and corresponding recovery algorithms are desired to 
reconstruct the videos.  

A straightforward approach is to independently reconstruct 
each video frame using a 2D sparsity transform (e.g., 2D DCT, 
2D DWT [6]). This approach can serve as a baseline against 

which other techniques are compared. As well as spatial 
redundancies, video signals also have plenty of temporal 
correlations, which can thus be exploited to enhance the 
sparsity representation. Wakin et al. propose to jointly 
reconstruct consecutive frames using a 3D wavelet transform 
in [7].  

A further effort is to take motion between frames into 
consideration. A variety of works propose to perform motion 
compensation and estimation (MC/ME) at the decoder (e.g., 
[8]-[9]). In these works, a block in the current frame can be 
predicted by one or more blocks in the neighboring frames for 
further modelling. The prediction accuracy of the blocks is 
essential for building an accurate temporal model. Unlike 
standard video coding, however, original values of video 
frames are not explicitly available at the decoder to perform 
motion estimation. Only random CS measurements of the 
underlying frames are present. A typical solution is to first 
obtain an initial recovery of each frame using some existing 
method, and then do motion estimation on these initial 
recoveries for further enhancement. Unfortunately, this strategy 
can only find a noisy prediction for blocks in the current frame, 
since the initial recovery usually has low fidelity to the actual 
frame values.  

 Based on the MC/ME idea, E. W. Tramel et al. propose to 
estimate the motion-compensated frame in the measurement 
domain [10]. Instead of directly performing block matching in 
the ambient pixel domain, it calculates the matching error in the 
measurement domain for finding the optimal predictive block. 
No initial recovery is required, and thus better prediction can 
be achieved in general. By this means, however, the block 
partitioning for reconstruction has to be coincide with that of 
sampling. Consequently, this restricts quality enhancement that 
can be achieved otherwise by using a smarter way of block 
partitioning at the decoder, e.g., a smaller block size, 
overlapping blocks.  

As discussed above, either the ambient pixel domain or the 
measurement domain is an optimal way for prediction. In this 
paper, we integrate both of their advantages and propose a dual 
structured-sparsity model for CS video reconstruction. We 
model the structured-sparsity of each block using the 
predictions obtained in both domains, and characterize both 
considerations in a unified statistical manner. Additionally, we 
propose an effective algorithm to solve the formulated 
optimization problem based on the split Bregman iteration 
algorithm.  



The remainder of this paper is organized as follows. Section 
II introduces the background of compressive sensing. Section 
III details the proposed model for CS video reconstruction. 
Section IV presents the proposed method for solving the 
optimization problem. Section V demonstrates the 
experimental results of the proposed algorithm and Section VI 
concludes this paper. 

II. BACKGROUND 

A. The Compressive Sensing Theory 

The compressive sensing theory states that a signal with 
sparse representation in a transform domain can be accurately 
recovered from a small number of measurements [11]. 
Concretely, let us consider a signal of a finite dimension

N∈x  . The acquisition process of CS is expressed as 
     = ，y xΦ                                        (1) 

where Φ is an M × N random projection matrix and M∈y   
represents the acquired linear measurements. M/N is called the 
sampling rate or subrate, which is typically very small. Thus 
the inverse problem is highly ill-posed.  

We represent the signal x in an appropriate N × N basisΨ , 
i.e., = Ψx α . If at most K<<N entries of the coefficientsα are 
nonzero, we say x is K-sparse in the domainΨ . Although many 
natural signals are not strictly sparse, they can be approximated 
as such; we call them compressible signals. According to the 
CS theory, sparse and compressible signals can be 
reconstructed by solving the following minimization problem:  
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B. Overview of CS-based Video Sampling and Reconstruction 

For the sake of encoder simplicity, we sample the video 
signal frame by frame in the unit of a block. We divide the 
video sequence into groups of pictures (GOP), each of which 
contains a key frame and several non-key frames. A key frame 
has a high sampling rate and a non-key frame has a relatively 
low sampling rate. 

For reconstruction, each frame is first recovered 
independently using a 2D sparsity model to get an initial value. 
Then we divide each non-key frame into overlapped patches 
(patch overlapping is effective to avoid blocking artifacts) and 
apply our proposed dual structured-sparsity model to each 
patch. Our proposed solving method is utilized for optimization 
of the problem derived from the model. Hence, non-key frames 
with enhanced quality are finally reconstructed. 

III. PROPOSED DUAL STRUCTURED-SPARSITY MODEL 

This section discusses the modelling process of each 
overlapped patch in a non-key frame. We present our 
structured-sparsity model in the first subsection, the dual-
domain prediction in the second subsection, and formulate the 

reconstruction algorithm derived from this model in the third 
subsection. 

A. Structured-Sparsity Model 

Rather than enforcing simple sparsity of each patch’s 
transform coefficients, we consider the intrinsic structure 
existing within these coefficients by utilizing the temporal 
correlations between frames [11].  

 Owing to the motion coherence of consecutive video frames 
[13], for the current patch, there exist similar patches in the 
neighboring key frames. We utilize these similar patches to 
generate predictions for the current patch (see the next 
subsection for the prediction process), and consider its residual 
sparsity in the transform domain. It is known that the residual 
is typically more compressible and thus exhibits higher sparsity 
levels than the original signal [5]. This residual sparsity is 
written as the following equation 

( )( )
1
,T

pred−W Ψ x x                               (4) 

where x contains all the pixel values of the patch, xpred 
represents a predictive patch obtained through our prediction 
strategy. Their difference is the residual.Ψ is a transform basis 
to sparsify the patch, and TΨ is its transpose. W is a weighting 
matrix, that consists of the weights 1 2, , ,iw w w   on the 
diagonal and zeroes elsewhere. 

Eq. (4) indicates a structured-sparsity model, that not only 
specifies a more realistic fact of a patch by calculating the 
residual, but also discriminatively weights different 
coefficients to exhibit their structure. 

B. Dual-Domain Prediction 

We design a dual domain strategy for achieving the 
prediction xpred for the patch: the pixel-domain prediction (P 
prediction) and the measurement-domain prediction (M 
prediction).  

We do patch matching in the ambient pixel domain for P 
prediction. The patch size and patch partitioning can be set in 
any way that is beneficial for reconstruction and not influenced 
by the encoder. Thus P prediction is quite flexible. We find 
similar patches in the neighbouring key frames by directly 
comparing the sum of square errors (SSE) of the patch pixel 
values. 
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Eq. (5) shown above formulates the process of finding a similar 
patch. ( )key

P x is the set of all possible patches in the reference 
key frames, and xi  is a patch in the set. Note that since the 
original value of the current patch is not available, we use its 
initial recovery 0x̂  for this calculation. 

simP
x is the found patch 

that has the smallest SSE with the initial recovery. Once we 
have obtained such a patch as

simP
x , we remove it from the set

( )key
P x and calculate Eq. (5) again to find the second closest 
patch. By repeating this process, we find C similar patches and 
then compute their linear combination as a prediction 

,1pred
x as 

follows 
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where 
,simP i

x  represents the i-th similar patch, and 
i

α is its 

weight, which is determined by the SSE between the similar 
patch and the current patch as formulated in the following 
equation given a constant h  
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Our second scheme is doing patch prediction in the 
measurement domain. M prediction is not influenced by the 
noisy initial recovery [10]. Compared to the P prediction, we 
recast the optimization into the measurement domain by 
applying the random projection matrix Φ to the block 
difference as follows 
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Note that in Eq. (8), the optimization unit is not a patch, but a 
block 

block
x  that is corresponding with the measurements y 

acquired from the block-based CS sampling. X contains each 
possible block in the reference key frames as a column, and β  
is a column vector consisting of the weight for each block 

1 2
, , ,

i
β β β  . We do this optimization as in [10] and obtain 
the optimal value for β . Then we select C blocks that have the 
largest weights as the similar blocks of 

block
x , and calculate a 

predictive block as follows  
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where
,simB i

x  represents the i-th similar block, and 
i

β  is its 
corresponding weight.  

Here, in order to take advantage of patch overlapping also 
for the M prediction, we design a scheme to transfer predictive 
blocks to predictive patches. For each block in the current 
frame, we calculate a predictive block through Eq. (8) and Eq. 
(9), and thus for the entire frame, we can assemble all the 
predictive blocks to get a predictive picture. In the way that the 
current frame is partitioned, we partition the predictive picture 
into overlapped predictive patches. Thus, each predictive patch 
corresponds to a patch in the current frame. We denote the 
predictive patch obtained by the M prediction as 

,2pred
x .  

C. Formulation of the Reconstruction Problem 

We incorporate our structured-sparsity model with the dual-
domain prediction into the CS reconstruction paradigm and 
obtain the following optimization problem 
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      (10)  
in which xf  denotes the entire original frame, yf  represents the 
corresponding measurements acquired by projecting  xf  onto 
the random matrix 

f
Φ . ( )fOP x is a set of all the overlapped 

patches in the current frame  xf  . The entries of the weighting 
matrices W1 and W2 are calculated as inversely proportional to 

the variances of the respective predictive patches. 1λ and 2λ  are 
parameters that balance the contributions of the two model 
terms. 

IV. OPTIMIZATION 

We design a method to solve the optimization problem of 
Eq. (10) based on the split Bregman iteration algorithm (SBI) 
[14].  

First, we convert Eq. (10) to a constrained problem by 
introducing two more variables z and v [15] as follows  
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Then we apply the Bregman algorithm to Eq. (11) and 
arrive at the following five iterative steps: 
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In the above equations, the superscript j denotes the iteration 
number. We can see that the problem of Eq. (10) is split into 
three subproblems: the x problem, the z problem, and the v 
problem. The x problem is a strictly convex function, which can 
be directly solved by derivative calculation. For solving the z 
problem and the v problem, we utilize the strategy in [16] and 
can also achieve concrete solutions for them.  

V. EXPERIMENTAL RESULTS 

In this section, we present the experimental results of our 
algorithm. We show the results of four standard test sequences 
of the ‘CIF’ size (352×288): ‘Akiyo’, ‘Foreman’, ‘Carphone’, 
and ‘Paris’. Each video sequence is sampled frame by frame at 
a block level using a Gaussian random projection matrix. The 
block size is set 32×32. We compare our proposed algorithm to 
four representative CS reconstruction methods in the literature: 
2D DWT [6], 3D DCT, MC/ME [9], and Video MH [10]. 2D 
DWT is a baseline to compare the performances of all the CS 
video methods.    

In the implementation of our algorithm, the transform matrix 
Ψ is made the DCT basis. We use the method of video MH to 
initialize each frame. The two key frames before and after the 
current non-key frame are used as references for prediction. 
The subrate of the key frames and the non-key frames are 0.7 
and 0.2, respectively. All the parameters of the model are set 
empirically for all test sequences. Concretely, the size of each 
patch is 8×8 pixels, the number of selected similar 
patches/blocks C is 10. The values of λ1 and λ2 are both set to 
be 0.001, and the values of η1 and η2 are both set to be 0.01. 



Fig. 1 illustrates the CS reconstruction performance of two 
GOPs of the four test sequences using the five algorithms. It is 
obvious that the proposed algorithm (dark green) achieves the 
highest PSNR performance for all the test video frames. On 
average, the proposed algorithm outperforms 2D DWT, 3D 
DCT, MC/ME, and video MH by 8.84 dB, 6.18 dB, 3.83 dB, 
1.52 dB respectively.  

The visual results of the recovered 5-th frame of ‘Foreman’ 
using the five algorithms are presented in Fig. 2. Obviously, our 
proposed algorithm not only yields the highest objective score 
in PSNR, but also preserves fine details in the frames and has 
much clearer visual results than the other comparative methods. 

The computational complexity of the proposed algorithm is 
O (N) and it takes about 6 minutes to reconstruct a video frame. 

VI. CONCLUSIONS 

In this paper, we propose an effective CS video 
reconstruction algorithm via a novel dual structured-sparsity 
model. In this model, we design a strategy to take advantage of 
two prediction techniques for modelling the structured-sparsity 
of natural video signals.  Owing to the collaborative design, the 
temporal correlations existing between video frames can be 
fully exploited. The experimental results demonstrate that the 
proposed algorithm outperforms the state-of-the-art methods in 
the literature. This work can be used in scenarios that require a 
simple encoder or high-quality video reconstruction. Possible 
future work concerning CS-based video coding includes design 
of the projection matrix, compression of the measurements, etc.  
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Fig. 1 CS reconstruction performance of the four video sequences using the 
proposed algorithm and the four comparative methods. The GOP size is 8. 
The first frame in a GOP is a key frame, and the others are non-key frames 

(a) Original (b) 2D DWT (30.15 dB) 

(c) 3D DCT (32.27 dB) (d) MC/ME (34.28 dB) 

(e) Video MH (36.72 dB) (f) Proposed (38.54 dB) 

Fig. 2 Visual comparison of CS reconstruction results for the 5-th frame of 
‘Foreman’ by different methods. 


