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Abstract—There are two sides to every story of visual saliency modeling in the frequency domain. On the one hand, image saliency

can be effectively estimated by applying simple operations to the frequency spectrum. On the other hand, it is still unclear which part of

the frequency spectrum contributes the most to popping-out targets and suppressing distractors. Toward this end, this paper tentatively

explores the secret of image saliency in the frequency domain. From the results obtained in several qualitative and quantitative

experiments, we find that the secret of visual saliency may mainly hide in the phases of intermediate frequencies. To explain this

finding, we reinterpret the concept of discrete Fourier transform from the perspective of template-based contrast computation and thus

develop several principles for designing the saliency detector in the frequency domain. Following these principles, we propose a novel

approach to design the saliency detector under the assistance of prior knowledge obtained through both unsupervised and supervised

learning processes. Experimental results on a public image benchmark show that the learned saliency detector outperforms 18

state-of-the-art approaches in predicting human fixations.

Index Terms—Image saliency, Fourier transform, spectral analysis, fixation prediction, learning-based, experimental study
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1 INTRODUCTION

THE history of visual saliency is an extremely long story.
The concept of computational visual saliency modeling,

however, is still very young in the field of computer vision
and image processing. In a word, visual saliency modeling
aims to simulate the selective mechanism in human vision
system by detecting the most conspicuous content in images
and videos. With this tool, applications such as image/
video retargeting [1], [2], smart advertising [3], [4] and
image analysis in remote sensing [5], [6] can achieve impres-
sive performance by focusing on the same visual content as
human being does.

The booming of visual saliency modeling is usually con-
sidered to originate from the work in [7]. After the rapid
development in the past two decades, three tightly corre-
lated branches emerge in this field, including objectness
proposal generation, fixation prediction and salient object
segmentation. Among these branches, objectness proposal
generation focuses on locating “objects,” including both tar-
gets and distractors, in the input scene with rectangular
windows [8], [9]. Fixation prediction aims to roughly pop-out
only targets and inhibit probable distractors [10], [11], [12],

while salient object segmentation proposes to exactly segment
only the closed contours of salient targets [13], [14]. Among
these three branches, fixation prediction can be intuitively
viewed as a preparatory step of salient object segmentation
and a special case of objectness proposal generation, which
is also the major concern of this study.

In existing works, saliency is often defined, explicitly or
implicitly, as the visual irregularity measured by various
contexts (e.g., local/global), features (e.g., intensity/color/
orientation), domains (e.g., spatial/spatiotemporal/spec-
tral) and attentional mechanisms (e.g., bottom-up/top-
down). In this study, we roughly categorize existing
saliency models into four groups. The first group, denoted
as the BS group, contains bottom-up models that measure
visual saliency by heuristically computing and combining a
set of contrast-like features in the spatial or spatiotemporal
domain (e.g., [7], [10], [15]). However, these models may fail
to distinguish targets from distractors that share similar
visual attributes. It is argued that the prior knowledge
obtained through similar scenes viewed before plays an
important role in separating targets and distractors [16].

Following this idea, some saliency models are proposed
to incorporate prior knowledge into visual saliency estima-
tion, while such prior knowledge can be obtained by unsu-
pervised learning (i.e., the UL group) or supervised learning
(i.e., the SL group). In particular, models in the UL group
focus on refining the extraction of saliency cues. These mod-
els (e.g., [12], [17], [18], [19]) often sample massive image
patches for training sparse codes (visual words, basis func-
tions, principle/independent components, etc.). With these
sparse codes, a less redundant representation of the input
image can be obtained, which is believed to be more suitable
for extracting saliency cues. Similar to models in the BS
group, such saliency cues are often heuristically combined
to measure the degree of saliency. On the contrary, models
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in the SL group often emphasize the optimal integration of
existing spatial/spatiotemporal saliency cues. In these mod-
els (e.g., [20], [21], [22]), it is believed that an optimal feature
integration strategy can be learned from user annotations
(e.g., fixation density maps or labeled salient objects) by
using the supervised learning algorithms. As reported in
[16], models in both UL and SL groups have some advan-
tages, and the learned prior knowledge can be helpful in
predicting fixations.

Most models discussed above fall into spatial or spatio-
temporal domain. On the contrary, some models (e.g., [23],
[24], [25], [26], [27]) are proposed to detect saliency in the
frequency domain (i.e., the FQ group). In these models,
saliency is often detected with three major steps: 1) applying
discrete Fourier transform (DFT) or discrete Cosine trans-
form (DCT) to input feature channels (e.g., intensity, color
opponencies or motion field); 2) modulating the frequency
spectrum (e.g., subtracting the average amplitude spec-
trum [23], setting the spectral magnitude to unity [24], or
keeping only the signs of DCT coefficients [26]); 3) generat-
ing saliency map through inverse DFT/DCT. Since each
DFT/DCT coefficient represents a kind of statistical infor-
mation of all input stimuli, saliency models in the FQ group
can efficiently locate the most salient targets from a “global”
perspective. However, it is still unclear which part of the
frequency spectrum contributes the most to popping-out
targets and suppressing distractors.

In this study, we propose to find the secret of image
saliency in the frequency domain by integrating the advan-
tages of various saliency models discussed above. Toward
this end, we first conduct a set of experiments to qualita-
tively and quantitatively measure the contribution of vari-
ous spectral information to saliency computation. From
these results, we find that the secret of saliency may mainly
hide in the phases of intermediate frequencies. To explain
this, we reinterpret Fourier transform from the perspective
of template-based contrast computation, which in turn
reveals several principles for designing the saliency detector
in the frequency domain. Following these principles, we
propose an approach to design the saliency detector under
the assistance of prior knowledge obtained by unsupervised
and supervised learning. Experimental results show that the
learned saliency detector outperforms 18 state-of-the-art
saliency models on a public image benchmark.

Our main contributions are summarized as follows:

1) Through extensive experimental studies, we find
that the secret of visual saliency may mainly hide in
the phases of intermediate frequencies obtained by
Fourier transform. In particular, the signs of the real
and imaginary parts, once correctly estimated, have
remarkable contribution to locating salient targets;

2) We reinterpret discrete Fourier transform from the
perspective of template-based contrast computation,
followed by five principles to design the saliency
detector in the frequency domain;

3) We propose a novel approach to design the image
saliency detector under the assistance of prior
knowledge obtained by both unsupervised and
supervised learning. To the best of our knowledge, it
is the first time that visual saliency estimation was

formulated as a machine learning problem in the fre-
quency domain.

The rest of this paper is organized as follows: Section 2
reviews existing saliency models. Section 3 conducts quali-
tative and quantitative studies to find the secret of image
saliency in the frequency domain. In Section 4, we propose
a learning-based approach to design the saliency detector.
Experimental results are presented in Section 5, and the
entire paper is concluded in Section 6.

2 RELATED WORK

In this Section, we first briefly review representative
saliency models in the BS, UL and SL groups, followed by
discussions on models in the FQ group with more technical
details.

Models in the BS group often compute visual saliency by
measuring the visual “irregularity” in the spatial or spatio-
temporal domain. Usually, such irregularity can be mea-
sured by multi-scale center-surround contrasts [7], visiting
time in random walk [28], pattern/color distinctness [29], or
the existence of high-level features [10]. Moreover, some
approaches incorporated global contrast (e.g., [30], [31]) or
uniqueness (e.g., [32]) to measure visual rarity from a global
perspective, which achieved breakthrough results in detect-
ing salient objects. Furthermore, such irregularity can also
take temporal information (e.g., flicker [15] and motion [33],
[34]) into account for video saliency estimation. In recent
studies, Zhang and Sclaroff [35] proposed to use simple fea-
tures (e.g., Lab color channels) and then randomly threshold
them to generate a set of Boolean maps so as to measure
visual saliency. On the contrary, Xu et al. [36] extracted a
large set of pixel-level, object-level and semantic-level
attributes and combined them for saliency estimation. These
two approaches represent two feasible directions in devel-
oping bottom-up models in the spatial/spatiotemporal
domain.

For models in the BS group, one problem is the existence
of visual redundancy across feature channels. With such
redundancy, targets and distractors may share some com-
mon visual attributes, making it difficult to separate them.
To address this problem, two feasible solutions are pro-
posed: encoding raw features to remove redundancy before
saliency estimation (i.e., models in the UL group) or identi-
fying feature channels in which targets and distractors have
the least attributes in common (i.e., models in the SL group).
Following these two solutions, models in the UL group uti-
lize the prior knowledge obtained by unsupervised learning
(e.g., basis functions [19], independent components [17],
[18], and visual words [12]). Such prior knowledge can be
used to obtain a compact representation of the input image,
which contains low redundancy. On the contrary, models in
the SL group are proposed to derive such prior knowledge
from supervised learning. That is, they adopt various learn-
ing algorithms to derive the optimal “feature-saliency”
mapping models from user data (e.g., human fixations and
salient object masks). Usually, such models can take the
form of linear weights [20], [22], Support Vector
Machine [21], [37], [38], boosting classifier [11], [39], ranking
model [40], and Markov Random Field [41]. Except some
outliers, most of these models work by emphasizing the
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feature channels that perform the best in separating targets
(fixated locations or salient objects [42]) from distractors.

Beyond the models discussed above, models in the FQ
group were proposed to estimate visual saliency in the fre-
quency domain. In these models, a typical flowchart is to
transform images or video frames into the frequency
domain by using DFT/DCT (or hypercomplex Fourier
transform, HFT). After that, the frequency spectrum is heu-
ristically modulated and transformed back to the spatial
domain so as to generate a saliency map with simple post-
processing steps (e.g., Gaussian blurring). Surprisingly,
these models can produce impressive results with high effi-
ciency. In [43], such frequency-based models were proved
to be biologically plausible.

As a pioneer work in the FQ group, Hou and Zhang [23]
proposed to extract spectral residual from the frequency
spectrum of image intensity, which was equivalent to sub-
tracting the locally averaged amplitude from the original
one. Similarly, Cui et al. [44], [45] proposed to compute tem-
poral spectral residual so as to detect salient motion in a
video sequence. Inspired by the work in [23], Guo and
Zhang proposed two innovative improvements in [24], [46].
The first improvement, denoted as PFT, proposed to
use only the phase spectrum of image intensity (and unity
magnitude) for saliency detection.1 In a later work,
Hou et al. [26] further validated that the signs of DCT coeffi-
cients performed impressively in detecting salient image
locations. In this case, such signs could be treated as a kind
of image signature. The second improvement, denoted as
PQFT, represented an image as a quaternion comprising of
four feature channels (i.e., intensity, red/green and blue/
yellow color opponencies, and motion). In the quaternion-
based representation, different feature channels can encode
different cues so as to measure the degree of saliency from
multiple perspectives. Thus image (or video) saliency can
be simultaneously estimated through the frequency spec-
trum obtained by applying HFT to multiple features.

Among the two improvements in [24], the latter one has
much stronger impact than the former one. As the phase-
only framework has been followed in [48], [49], it becomes
very popular to represent an image as a quaternion in recent
studies (e.g., [27], [50], [51]). For instance, Li et al. [52] com-
bined the approaches of [23] and [24] by computing the
spectral difference of amplitude and phase between an
input image and its blurred version in HSV color channels.
This work was further extended to compute video saliency
in [27]. In [53], image intensity was assigned with a higher
weight than the red/green and blue/yellow color opponen-
cies. In this manner, image intensity was better emphasized
in amplitude modulation (e.g., smoothing the spectral
amplitude obtained by HFT). In [2], Fang wt al. proposed to
use discrete Cosine transform for image saliency analysis,
while Schauerte and Stiefelhagen [51] proposed to use the
quaternion DCT and incorporated the face conspicuity map
to improve the overall performance of the saliency model.
Later on, Schauerte and Stiefelhagen [25] tested the

performances of various frequency-based saliency models
on several public image benchmarks. In this study, they
conducted extensive experiments to see the influence of
color spaces, weights of feature channels and number of
scales. It was reported that the performance of a saliency
model in the FQ group may differ remarkably when differ-
ent color spaces or different numbers of scales were used.
This implies that the redundancy in an image still exists in
its frequency spectrum, which may degrade the overall per-
formance of saliency estimation.

By inspecting all models discussed above, we can see that
frequency spectrum may contain invaluable cues for visual
saliency computation. Although saliency can be efficiently
mined through simple spectral modulation, it is still unclear
which part of frequency spectrum corresponds to the real
secret for saliency estimation. As a result, in this study we
propose to find the secret of image saliency in the frequency
domain through qualitative and quantitative experimental
studies. Furthermore, as the usage of prior knowledge in
the saliency models from UL and SL groups have been
proved to be helpful for separating targets and distractors,
it is worth discussing how to mine the saliency secret from
the frequency spectrum under the assistance of prior knowl-
edge obtained by unsupervised and supervised learning.

3 FINDING THE SECRET OF IMAGE SALIENCY

IN THE FREQUENCY DOMAIN

In this Section, we conduct qualitative and quantitative
experiments to explore the secret of image saliency in the
frequency domain. We also reinterpret the concept of DFT
from the perspective of template-based contrast computa-
tion. Finally, several principles are proposed to design the
saliency detector.

3.1 A Qualitative Study on the Secret of Saliency

As discussed above, both spectral amplitude and phase can
contribute to the detection of salient target. Thus two major
concerns may arise: what are the roles of these two spectra in
popping-out targets and suppressing distractors and which
spectrum has more contribution? To address these two con-
cerns, we design a small experiment for qualitative analysis.

Typically, the objective of saliency prediction is to gener-
ate a saliency map S for an input image I that perfectly
approximates its fixation density map G:

I ) S ! G; (1)

where “)” and “!” mean “generation” and
“approximation,” respectively. As a consequence, we can
express the same correlations between I, S and G in the fre-
quency domain:

F ½I� ) F ½S� ! F ½G�; (2)

where F ½�� denotes discrete Fourier transform. In other
words, the amplitude and phase spectra of S, which are
generated from the frequency spectrum of I, are expected to
approximate those spectra of G:

A F ½S�ð Þ ! A F ½G�ð Þ; P F ½S�ð Þ ! P F ½G�ð Þ; (3)

where Að�Þ and Pð�Þ denote spectral amplitude and phase,
respectively. In this manner, the problem of image saliency

1. Actually, the phase-only image reconstruction have already been
well studied decades ago (e.g., in [47]). However, in [24] it is the first
time that the reconstructed images were used to address the problem of
fixation prediction.
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estimation can be described as modulating the amplitude and
phase spectra of an input image to approximate the corresponding
spectra of its fixation density map. For the sake of simplifica-
tion, we use AI (or AG) and PI (or PG) to represent the
amplitude and phase spectra of I (or G).

Since the final objective of visual saliency estimation is to
approximate G with S, we can safely assume that AG and
PG in (3) are the “perfect” amplitude and phase spectra,
respectively. Thus an interesting concern may arise: which
spectrum, AG or PG, contributes the most to locating salient
image content? Toward this end, we propose to see what
saliency maps can be generated by combining AG with PI

and AI with PG. Here we generate a saliency map by trans-
forming each combination of amplitude and phase spectra
back to the spatial domain and then squaring the modulus
of every complex-valued pixel. Here we simply normalize
the saliency map to [0, 1] without any post-smoothing as in
[23], [24], [53].

From Fig. 1, we find that combiningAG andPI generates a
“clean” saliency map, but most energy is assigned to unex-
pected locations. On the contrary, combiningAI and PG suc-
ceeds in popping-out salient targets but fails to suppress
noise in most locations. As a result, we tentatively assume
that the secret of salient locationmainly hides in spectral phase, and
the secret of saliency strength can be found in spectral amplitude.

3.2 A Quantitative Study on the Secret of Saliency

Beyond qualitative analysis, we also wish to quantitatively
measure the contributions of spectral amplitude and phase.

Therefore, we conduct several experiments on Toronto [17],
which contains 120 color images and their fixation density
maps. In the experiments, we convert all the 120 images to
gray and then test the performance of saliency maps com-
puted by combining various types of amplitude and phase
spectra. In total, two types of phase spectra, PI and PG, are
combined with five types of amplitude spectra, including
AI , AG, AI �Hl, AI �Hh and AI �Hb. Here Hl;Hh;Hb are
low-pass, high-pass and band-pass filters, respectively. The
operator � indicates element-wise multiplication of two
matrices. For each pair of spectral amplitude and phase, we
generate saliency maps in the same way as the qualitative
experiment does. Moreover, we conduct the experiment
three times at 128� 128, 64� 64 and 32� 32 to explore the
influence of resolution.

In the experiment, we have tested the ideal form and the
Gaussian form of each filter (i.e., Hl;Hh;Hb). Suppose the
frequency spectrum spans from 0 (at center) to 1 (at corner),
we control the shape of a low-pass or high-pass filter by its
cut-off frequency se 2 ½0; 1�, and a band-pass filter can be
controlled by the pass-band center sc 2 ½0; 1� with band-
width sw 2 ½0;minð2sc; 2� 2scÞ�. The typical shapes of these
filters are shown in Fig. 2. Note that we enumerate all feasi-
ble values of se, sc and sw from 0 to 1 with a step of 0.1 to
find the best parameters.

For quantitative evaluation, we select all fixated pixels
and the same number of non-fixated pixels from each
image, which are used as positive and negative instances,
respectively. To alleviate the influence of dataset bias (e.g.,
center-bias), non-fixated pixels are selected with respect to
the distribution of fixated pixels in all the 120 images. As
shown in Fig. 3, non-fixated pixels are also center-biased
and have a minimum distance from fixated pixels to avoid
ambiguity. Let P and N be the sets of positive and negative
instances, we use SðpÞ 2 ½0; 1� to represent the estimated
saliency value of p 2 P [N.

In the experiment, we adopt Area under the ROC curve
(AUC) to be an evaluation metric [54]. To compute AUC,
we apply all thresholds in f0; 0:01; 0:02; . . . ; 1g to binarize
SðpÞ for p 2 P [N. At each threshold, a pair of false positive
rate and true positive rate are computed to interpolate the
ROC curve. In this manner, saliency maps that always
assign targets with saliency values higher than distractors
will gain an AUC of 1.0, while random assignment leads to
an AUC of 0.5.

Fig. 1. Spectral phase contains the secret for locating the salient targets,
and spectral amplitude helps to determine the saliency strength. AI and
AG: amplitude spectra; PI and PG: phase spectra. IDFT: inverse DFT.

Fig. 2. Candidate filters used in the quantitative study, including the
ideal/Gaussian low-pass, high-pass and band-pass filters.

Fig. 3. Sampled instances for evaluation. (a) density maps for fixated
and non-fixated pixels; (b) Sampled fixated pixels (green) and non-fix-
ated pixels (yellow).
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AUC has been proved to be useful in many existing stud-
ies. However, it may be flawed for relying solely on the
interpolated ROC curve without considering the distribu-
tion of thresholding points along the curve (i.e., the interpo-
lation flaw [55]). In other words, AUC focuses on only the
ordering of saliency [56], while the “gap” between fixated
and non-fixated pixels are ignored. Thus a fuzzy saliency
map may also reach a high AUC if it simply assigns slightly
higher saliency values to fixated pixels than to non-fixated
pixels.

To address this problem, we propose to measure the
saliency gap between fixated and non-fixated pixels with
Energy-On-Fixations (EOF). Unlike AUC that focuses on the
ordering of saliency, EOF is computed as the ratio of energy
assigned to targets:

EOF ¼
P

p2P SðpÞP
p2P[N SðpÞ : (4)

A saliency model that assigns all energy to targets has an
EOF of 1.0. We also compute the F-measure (denoted as FS)
to equally consider both AUC (i.e., saliency ordering) and
EOF (i.e., saliency gap):

FS ¼ 2�AUC� EOF

AUCþ EOF
: (5)

Ideally, an optimal saliency map (e.g., the fixation den-
sity map) has AUC ¼ EOF ¼ FS ¼ 1:0, while a saliency
map with random predictions has AUC ¼ EOF ¼ FS ¼ 0:5.
Note that the evaluation is conducted by resizing the esti-
mated saliency maps to the sizes of original images.

Given the evaluation metrics, we have shown in Table 1
the performance of the saliency maps that are estimated by
combining various amplitude and phase spectra at three
resolutions. From Table 1, we find three interesting
phenomena:

� Amplitude vs. phase. Combining any amplitude spec-
trum with PG results in much better performance of
saliency maps than using PI (on average, an increase
of 0:25� 0:14 can be expected in FS). In particular,
combining AG with PI is equivalent to random pre-
diction, and combining AI and PG reaches a much
higher FS.

� The best filter. Band-pass filters always perform
among the best. When applied on AI and combined
with PI , the best band-pass filter acts as a high-pass
filter with suppression of the highest frequency
(e.g., sc ¼ 0:9; sw ¼ 0:2 at 32� 32 and 64� 64).
When applied on AI and combined with PG, the best

band-pass filter is a kind of low-pass filter with
a notch at frequencies around DC (e.g., sc ¼ 0:1;
sw ¼ 0:2 at 32� 32 and 64� 64).

� Influence of resolution. In most cases, the resolution
only slightly changes the overall performance. In
particular, 32� 32 is much more computationally
efficient than 128� 128.

From these phenomena, we can conclude that both spec-
tral amplitude and phase contribute to saliency estimation.
In particular, spectral phase, whose importance has already
been proved in [47], contributes more than spectral ampli-
tude. To further validate this conclusion, we conduct a small
experiment at the resolution of 32� 32. In the experiment,
we keep only the signs of the real and the imaginary parts of
F ½G�, while all the other cues are ignored. That is, we have
only �1� i in the frequency spectrum (and few cases of �1
and�i). Surprisingly, the estimated saliency maps can reach
a FS score of 0.88 (AUC ¼ 0:83, EOF ¼ 0:92). This finding is
consistent with the conclusion of [26] that saliency can be
detected from the signs of DCT coefficients. However, we
can see that saliency maps estimated only from the signs of
DFT coefficients are still far from perfect (i.e., 0.17 in AUC,
0.08 in EOF and 0.12 in FS). This further validates the
assumption that the secret of saliency may mainly hide in the
phase spectrum, and the spectral amplitude also contributes to the
generation of perfect saliency maps, even at very low resolutions.

3.3 A Template-Based Reinterpretation of DFT

To explain the experimental results obtained so far, we rein-
terpret the concept of discrete Fourier transform from the
perspective of template-based contrast computation. As
visual contrast, either local or global, plays an important
role in measuring visual saliency, we aim to seek a direct
link from Fourier coefficients to such contrast cues.

Given a gray image I with resolution N �N , its com-
plex-valued Fourier coefficient at ðu; vÞ can be computed as:

F ðu; vÞ ¼
XN�1

x¼0

XN�1

y¼0

Iðx; yÞeiu; u ¼ �2pðuxþ vyÞ
N

; (6)

where u; v 2 f0; 1; . . . ; N � 1g. We can see that the real and
the imaginary parts of F ðu; vÞ can be rewritten as:

<ðu; vÞ ¼
X

cos u	0

cos uIðx; yÞ þ
X

cos u<0

cos uIðx; yÞ;

=ðu; vÞ ¼
X
sin u	0

sin uIðx; yÞ þ
X
sin u<0

sin uIðx; yÞ:
(7)

From (7), we can see that Fourier transform can be rein-
terpreted as computing a set of template-based contrasts.

TABLE 1
Performance of Saliency Maps on TorontoWhen Various Amplitude and Phase Spectra Are Combined at Three Resolutions

PI (32� 32) PG (32� 32) PI (64� 64) PG (64� 64) PI (128� 128) PG (128� 128)

AUC EOF FS AUC EOF FS AUC EOF FS AUC EOF FS AUC EOF FS AUC EOF FS

AI - - - 0.91 0.83 0.87 - - - 0.90 0.82 0.86 - - - 0.90 0.82 0.86
AG 0.49 0.49 0.49 - - - 0.49 0.50 0.49 - - - 0.49 0.50 0.49 - - -
AI �Hl 0.40 0.43 0.41 0.91 0.83 0.87 0.39 0.42 0.40 0.91 0.83 0.87 0.39 0.42 0.41 0.91 0.83 0.87
AI �Hh 0.64 0.67 0.66 0.84 0.95 0.89 0.65 0.70 0.68 0.81 0.93 0.87 0.66 0.68 0.67 0.71 0.85 0.78
AI �Hb 0.66 0.70 0.68 0.90 0.90 0.90 0.66 0.71 0.69 0.84 0.95 0.89 0.65 0.69 0.67 0.84 0.95 0.89
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For <ðu; vÞ and =ðu; vÞ, we can define four N �N templates
with non-negative coefficients:

T <þ
uv ðx; yÞ ¼ maxð cos u; 0Þ;

T =þ
uv ðx; yÞ ¼ maxð sin u; 0Þ;

T <�
uv ðx; yÞ ¼ maxð� cos u; 0Þ;

T =�
uv ðx; yÞ ¼ maxð� sin u; 0Þ:

(8)

With these templates, we can rewrite the computation of
<ðu; vÞ and =ðu; vÞ as

<ðu; vÞ ¼ I � T <þ
uv

� �
� I � T <�

uv

� �
;

=ðu; vÞ ¼ I � T =þ
uv

� �
� I � T =�

uv

� �
;

(9)

where h�i denotes the sum of all elements in a matrix. As

shown in Fig. 4, these four templates (i.e., T <þ
uv and T <�

uv ,

T =þ
uv and T =�

uv ) actually divide the input image into two
pairs of regions. As a consequence, <ðu; vÞ and =ðu; vÞ actu-
ally represent the weighted contrasts between each pair of
regions.

When DFT is applied on a gray image, there are totally

4N2 templates that are used to compute 2N2 contrast scores
(as shown in Fig. 5). Consequently, the frequency spectrum
stores contrast values obtained at multiple scales and direc-
tions. With these contrasts, saliency detection in the fre-
quency domain can be viewed as finding the templates that
(statistically) perform the best in capturing the difference

between targets and distractors. Templates for the lowest
frequencies divide images into large regions, but such parti-
tions are often too “coarse” to accurately locate salient tar-
gets. On the contrary, templates for the highest frequencies
provide “fine” partitions that achieve only high responses
to noise and textures (also stated in [13]). This explains the
reason that band-pass filters perform the best in fixation predic-
tion by discarding the lowest and highest frequencies.

Moreover, the template-based contrast also explains the
reason that the signs of the real and the imaginary parts,
once correctly estimated, are highly effective in locating
salient targets. Suppose there are a set of targets and distrac-
tors in the image. Given a pair of templates, in most cases
one template covers more targets and the other one covers
more distractors. For the real-part or the imaginary-part of
each Fourier coefficient, its sign determines which template
covers more targets than distractors. By assigning more
energy to the region covered by the correct template in the
inverse transform, we can pop-out more targets and sup-
press more distractors. Since the signs of the real-part and
the imaginary-part are encoded in spectral phase, phase
modulation becomes much more effective in locating salient
objects than amplitude modulation (e.g., PG is more effec-
tive than AG in the quantitative experiments).

3.4 Principles for Designing Saliency Detector

From the experimental results obtained so far, we can con-
clude that the secret of saliency mainly hides in the phases
of intermediate frequencies. Meanwhile, both spectral
amplitude and phase contribute to the detection of saliency,
and phase contributes more than amplitude. Inspired by the
template-based reinterpretation as well as the solutions in
existing frequency-domain models, we have concluded
how to modulate the frequency spectrum so as to find the
secret of saliency. For the sake of simplification, we use the
term “saliency detection” to describe the modulation pro-
cess and develops several principles for designing the
saliency detector in the frequency domain:

1) Multiple complementary feature channels are pre-
ferred to fully utilize the input visual stimuli.

2) Both spectral amplitude and phase should be modu-
lated to reach the best performance.

Fig. 4. Each Fourier coefficient is computed by dividing an image into
two pairs of regions and computing the weighted contrast between each
pair of regions.

Fig. 5. Fourier transform can be interpreted as dividing an image with each of the 2N2 template pairs for contrast computation. As a consequence,
saliency detection can be described as highlighting the most discriminative templates so as to correctly assign the energy only to salient targets in
the inverse Fourier transform.
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3) Phase modulation helps to locate the salient targets,
and amplitude modulation helps to clean up proba-
ble noise.

4) Intermediate frequencies should be emphasized, and
the lowest and highest frequencies should be
suppressed.

5) Fourier coefficients can be adjusted with respect to
their neighbors for encoding template-based con-
trasts at similar orientations and scales.

Among these principles, the first principle is inspired by
the fact that many saliency models have achieved impres-
sive performance by using complementary features (e.g.,
red-green and blue-yellow color opponencies [7], [24], [53],
YUV or Lab colors [25], [57] and ICA components [17], [19]).
The second, third and fourth principles are directly moti-
vated from the analysis of the experimental results dis-
cussed above. From the perspective of template-based
contrast computation, we notice that there often exist some
templates that perform better in capturing figure-ground
contrasts than their neighboring templates (i.e., templates
with similar orientations and scales). As a consequence, the
corresponding Fourier coefficients can be viewed as singu-
larities in the frequency spectrum. Inspired by this fact, the
fifth principle is proposed, which aims to modulate Fourier
coefficients with respect to their neighbors so as to enhance
such singularities. In this manner, the corresponding tem-
plates will be emphasized in the inverse DFT, making the
energy converge to salient targets other than background
regions in the estimated saliency map.

4 LEARNING TO DESIGN IMAGE SALIENCY

DETECTOR IN THE FREQUENCY DOMAIN

Following the principles proposed above, we will present
how to design the saliency detector in the frequency domain.
Instead of using only the heuristic spectral filters, we also put
the prior knowledge obtained by unsupervised and super-
vised learning into consideration during the design process.
With these filters, the secret of saliency can be effectively and
efficiently discovered from the frequency spectrum.

4.1 Extracting Complementary Feature Channels

To design the saliency detector, several complementary fea-
ture channels should be extracted from the input image first
(i.e., the first principle). Here we propose to extract comple-
mentary feature channels by using Independent Component
Analysis (ICA), which can greatly remove the redundancy
in adjacent pixels through unsupervised statistics. More-
over, the independence property allows us to detect visual
saliency separately from each channel with simple DFT
instead of using HFT [24], [25], [53]. Toward this end, we
first gather 1,000 indoor/outdoor images from Flickr and
sample 500 non-overlapping 8� 8 patches from each image.
Each patch is represented with a 192D RGB color vector, on

which ICA is conducted to obtain C independent compo-
nents. By jointly considering the efficiency and performance,
we empirically set C ¼ 11. These independent components
can be viewed as some kinds of prior knowledge that help
us to remove redundancy from input visual stimuli.

Usually, the coefficient maps obtained by ICA have
remarkably different visual characteristics from the original
color channels (as shown in Fig. 6), making it difficult to
manually design the saliency detector in the corresponding
spectra. Thus we propose to train the saliency detector for
both amplitude and phase modulation (i.e., the second and
third principles). Here we select 903 training images from
the public image benchmark MIT1003 [21] and leave the
rest 100 images for testing purpose. Note that all the train-
ing images are resized to the same resolution of 256� 256.
By projecting every non-overlapping 8� 8 patches from the
kth image onto the cth independent component, we obtain a
32� 32 coefficient map, denoted as Ick. Meanwhile, we also
down-sample the fixation density map of the kth image to
the size of 32� 32, denoted as Gk. In this manner, we can
obtain C training sets with all the learned independent com-

ponents, denoted as Tc ¼ fðIck; GkÞg903k¼1 for c ¼ 1; . . . ; C.

4.2 Pre-Filtering the Amplitude Spectrum

To measure image saliency on these coefficient maps, we
first compute their frequency spectra through Fourier trans-
form.2 Inspired by the experimental results in Table 1, we
adopt a Gaussian band-pass filter, denoted as Hbh (sc ¼ 0:8,
sw ¼ 0:4, see Fig. 7a for the shape of this band-pass filter) to
filter out the lowest frequencies and suppress the highest
frequencies (i.e., the fourth principle). Thus for a training
instance ðI;GÞ 2 Tc, we have

FI ¼ N F ½I� �Hbhð Þ; FG ¼ F ½G�; (10)

where Nð�Þ denotes an operation that adjusts the frequency
spectrum so as to generate only real-valued non-negative
responses during inverse Fourier transform. Suppose F is a

frequency spectrum and F̂ ¼ NðF Þ, we have

F̂ ðu; vÞ ¼ 1

N2

XN�1

x¼0

XN�1

y¼0

eiu
XN�1

u¼0

XN�1

v¼0

F ðu; vÞe�iu

�����

�����: (11)

Fig. 6. Coefficient maps obtained by ICA have different visual character-
istics from the original color channels.

Fig. 7. Band-pass filters used in pre-filtering and post-filtering. In pre-fil-
tering, the band-pass filter acts as a high-pass filter which also sup-
presses the highest frequency (sc ¼ 0:8, sw ¼ 0:4). In post-filtering, the
band-pass filter acts as a low-pass filter that contains a notch at the zero
frequency (sc ¼ 0:1, sw ¼ 0:2).

2. Without specification, in this study the DC frequency of every
spectrum is shifted to ½N=2; N=2� after Fourier transform and to ½0; 0�
before inverse Fourier transform.
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We can see thatNð�Þ is equivalent to transforming the signal
back to the spatial domain, computing the modulus of the
complex-valued response at every pixel, and then trans-
forming the new coefficient map back to the frequency
domain (see Fig. 8 for some examples).

As stated above, Fourier coefficient FIðu; vÞ encodes two
template-based contrasts in its real and imaginary parts. As
a result, the operation in (11) is equivalent to the modulation
of such contrasts. In other words, amplitude filtering will also
adjust the spectral phase, which may be the main reason that
certain amplitude modulations can also help to locate
salient targets.

4.3 Learning to Design a Phase Filter

Inspired by the fact that neighboring coefficients in FI are
generated by the templates that compute contrasts at similar
scales and directions, here we tentatively explore the feasi-
bility to directly modulate the phase of each coefficient by
considering the influences of its neighbours. In other words,
we aim to design a convolution template with the size
M �M (we empirically set M ¼ 3 in this study). By
convolving FI with this template (i.e., phase filter), the
phases of all coefficients are expected to approximate the
corresponding phases in FG (i.e., the fifth principle).

Different from the amplitude filter, however, it is difficult
to manually design a phase filter. Therefore, we try to learn
a templateHc

p from Tc by minimizing

min
Hc
p

X
ðI;GÞ2Tc

L PðFI 
Hc
pÞ;PðFGÞ

� �
; (12)

where 
 denotes convolution and Lð�Þ is a loss function that
measures the difference between the phase spectra of

FI 
Hc
p and FG. Here we first normalize FI to let all its spec-

tral amplitudes sum up to 1 and then sample a set of
M �M coefficient patches (100 patches in this study) from
FI . Let Buv be the patch centered at ðu; vÞ, we can define the
loss function as

L PðFI 
Hc
pÞ;PðFGÞ

� �

¼
X

Buv2FI
wuv � ‘ hBuv �Hc

pi; FGðu; vÞ
� �

;
(13)

where ‘ð�Þ is the Cosine distance of two complex numbers.
Here wuv ¼ jFIðu; vÞj is a non-negative weight to emphasize
a training instance with larger amplitude since it will play a
more important role in the inverse Fourier transform. By
incorporating the loss function (13) into the optimization
objective (12), we find that the optimization objective con-
sists of a set of weighted Cosine distances, and the variables
in Hc

p (linearly weighted and combined in each term) are

the only parameters needed to be optimized. Therefore, we
can solve this problem with gradient descent algorithm.

As shown in Fig. 9, the learning process aims to minimize
the difference between the phase spectra of an input image
and its fixation density map. Note that we learn a phase fil-
ter for each of the C feature channels (i.e., coefficient maps
obtained by projecting all training images onto each of the
C independent components). As stated above, the indepen-
dence of these feature channels ensures that the secret of
saliency is independently encoded in their frequency spec-
tra. Thus the saliency secret in each feature channel can be
best mined through the feature-specific phase filter.

4.4 Visual Saliency Estimation

Given the phase filters learned on C feature channels, we
use it to mine the secret of saliency from FI :

F 

I ¼ N

�
FI 
Hc

p

�
: (14)

Note that such phase modulation will also alter the spectral
amplitude, making it less accurate. Inspired by the results
in Table 1, band-pass filter can be used to improve the per-
formance when a poor amplitude spectrum (e.g., AI) is
combined with a good phase spectrum (e.g., PG). Inspired
by that, we apply a band-pass filter Hbl (sc ¼ 0:1; sw ¼ 0:2)
after the phase modulation to further refine the spectral
amplitude. As shown in Fig. 7b, this filter is equivalent to a
Gaussian low-pass filter with a notch in frequencies around
DC. Note that we applyHbl twice on the frequency spectrum
to achieve the best performance. Finally, the modulated fre-
quency spectrum is transformed back to the spatial domain

Fig. 9. A feature-specific convolution template can be learned for modu-
lating the phase spectrum from each of the C feature channels.

Fig. 8. Frequency spectrum should be re-adjusted after applying any
operation so as to remove the probable imaginary parts generated in
inverse DFT. (a)-(b) input images and amplitude spectra. (c) amplitude
spectra filtered with a Gaussian band-pass filter (sc ¼ 0:8,sw ¼ 0:4).
(d)-(e) maps obtained by inverse DFT (modulus calculated) and the new
amplitude spectra.
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with the moduli of complex-valued pixels being squared to
obtain a conspicuous map. Note that we have C indepen-
dent feature channels and all the C conspicuous maps
should be combined with equal weight to generate the final
saliency map.

To sum up, the saliency map S of a testing image I can be
derived from the following steps,

FIc ¼ N F ½Ic� �Hbhð Þ; 8c 2 f1; . . . ; Cg;

F 

Ic
¼ N FIc 
Hc

p

� �
; 8c 2 f1; . . . ; Cg;

S ¼
XC
c¼1

F �1 N F 

Ic
�Hbl

� �
�Hbl

h i���
���
2

;

(15)

where Ic is the coefficient map obtained by projecting I onto
the cth independent component. Note that we conduct no
post-processing operation in the spatial domain, e.g., border
cut, center-biased re-weighting or Gaussian smoothing.
Everything is done in the frequency domain, and we simply
normalize the saliency map S to the dynamic range of [0,1].

5 EXPERIMENTS

To validate the effectiveness of the proposed approach, we
conduct several experiments in this Section. First, we con-
duct extensive comparisons with state-of-the-art
approaches on the 100 testing images of MIT1003, which is
the same testing images used in [21]. To analyze the perfor-
mance of various models, we conduct several small experi-
ments on these 100 testing images as well as the 120 images
in Toronto. In all these experiments, we adopt the same
strategies as in Section 3 for sampling fixated and non-fix-
ated pixels as well as computing the three evaluation met-
rics (AUC, EOF and FS).

In the experiments, we adopt 18 state-of-the-art models
for quantitative comparison. The source codes or execut-
ables for these approaches are publicly available on the
Internet. These approaches are selected from the four major
groups introduced in Section 2, including:

� BS group: bottom-up models in the spatial domain,
including IT [7], GB [28], CA [10] and BMS [35];

� UL group: models that utilize prior knowledge
learned in an unsupervised manner, including
AIM [17], SUN [18], ICL [19] and SP [12];

� SL group: models that utilize prior knowledge
learned in a supervised manner, SNR [20], JUD [21],
PMT [22] and BST [11];

� FQ group: bottom-up models in the frequency
domain, including: SR [23], PFT and PQFT [24],
QDCT [25], SIG [26] and HFT [53].

The performances of these 18 approaches and our
approach are illustrated in Fig. 10 in terms of AUC, EOF
and FS. In particular, the approaches in each group are
ordered from left to right with increasing FS scores. Due to
the space limitation, we only illustrate in Fig. 11 several rep-
resentative examples for our approach and the best
approach in each group.

From Fig. 10, we find that our approach outperforms all
the other 18 approaches in terms of EOF and FS, and our
AUC score is comparable with the best model in each
group. Note that we conduct only simple filtering opera-
tions on the frequency spectrum at the resolution 32� 32
(four filtering steps are used in total), leading to an
extremely efficient algorithm. With the Matlab implementa-
tion, our approach takes only 2.01 s to process all the 100
testing images of MIT1003 (preloaded into memory and
down-sampled to the resolution 256� 256) on a platform
with a 3.40 GHz CPU. To sum up, our approach is very effi-
cient and achieves the best EOF and state-of-the-art AUC.

By further investigating the quantitative results in Fig. 10
and the representative examples in Fig. 11, we believe that
the success of our approach originates from the combination
of prior knowledge obtained by unsupervised and super-
vised learning (i.e., ICA and phase filters learned from
data). In other words, we assume that unsupervised prior
knowledge helps to split the secret of saliency hidden in the input
signals into less-redundant feature channels, and supervised prior
knowledge assists to design feature-specific detector to find the
secret of saliency from each channel. To further validate this
conclusion, in the following parts of this Section we com-
pare our model with the models from the four groups for
performance analysis in detail.

5.1 Comparison with Bottom-Up Models

First, we compare our model with the bottom-up models in
the BS and FQ groups. These models utilize only the bot-
tom-up framework to process visual stimuli in the spatial/
frequency domain and no prior knowledge is involved.
From Fig. 10, we can see that these models achieve

Fig. 10. Performance of 18 saliency models on the 100 testing images ofMIT1003. Note that the models in each group are listed from left to right with
increasing FS scores.
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comparable AUC scores in [0.69, 0.73] with a standard devi-
ation of 0.013, but their EOF scores are much lower than the
EOF score of our approach. This implies that the bottom-up
approaches may pop-out both targets and distractors that
share common visual attributes due to the redundancy in
the input visual stimuli. Thus we can assume that the inde-
pendent ICA feature channels contribute a lot to the impres-
sive performance of our approach for containing less
redundancy. To validate that, we also test the performance
of our approach when the following features are used:
1) Intensity, 2) Lab color channels, 3) PCA with the first 11,
54 and 192 components, and 4) ICA with 2, 5 and 20 compo-
nents. The experimental results are shown in Table 2, from
which we find that the number of feature channels are
tightly correlated with the overall performance. In particu-
lar, the overall performance increases steadily when more

PCA components are used. However, the performance
using 20 ICA components is slightly worse than that using
11 components. This indicates that the secret of saliency
may be separately encoded in a large number of comple-
mentary feature channels, which cannot be expressed as a
quaternion (e.g., PQFT, HFT and QDCT). This finding also
validates the first principle for designing the saliency
detector.

In particular, we also find that the six models in the FQ
group perform unsatisfactory in AUC, which may be
caused by the fact that these models (except SIG) mainly
focus on the amplitude modulation. Since we have proved
that the spectral phase contributes the most to locating
salient targets (i.e., the third principle), such amplitude
modulation is often insufficient to accurately locate salient
targets. On the contrary, SIG proposes to detect saliency
from the signs of DCT coefficients and outperforms the
other five models in AUC. However, the secret of saliency
may mainly hide in the phases of intermediate frequencies.
Without filtering out the lowest and highest frequencies,
“noise” will appear, leading to a lower EOF. Compared
with these models, the success of our approach mainly
arises from the phase filters learned from data. Thus an
interesting concern may arise: whether models in the FQ
group can benefit from the same ICA feature channels? To
answer this question, we re-test SR, PFT and SIG on the ICA
feature channels used in our approach and have their
parameters manually fine-tuned to reach their best perfor-
mance. We find that the FS scores of SR and PFT decrease
by 2.3 and 1.2 percent, respectively. Meanwhile, the FS score
of SIG stays almost unchanged (AUC decreases by 2.0 per-
cent and EOF increases by 1.5 percent). This result may be
explained by the fact that the visual characteristics of ICA
features are quite different from the original color stimuli
(see Fig. 6 for an example). On the contrary, our approach
can adapt to such data with a learning-based framework,
leading to better performance.

As shown in Fig. 12, the filters used in our approach can
gradually improve the overall performance on the 100 test-
ing images from MIT1003 with multiple filtering opera-
tions. From Fig. 12, we find that if only the first band-pass
filter is applied on the spectral amplitude, the saliency
maps of all testing images in MIT1003 reach only an AUC
of 0.69 and an EOF of 0.67. After that, we have tried all the
low-pass, high-pass and band-pass filters used in Section 3
and find that none of them can further improve the perfor-
mance of our model after the first band-bass filter is
applied unless we perform phase modulation. The contri-
butions of phase modulation are two-folds: First, the phase
modulation itself can improve the performance (i.e., 0.02 in

Fig. 11. Representative saliency maps generated by our model and the
best model from each of the four groups. The images are from the 100
testing images ofMIT1003 and FDM indicates the fixation density map.

TABLE 2
Performance of Our Approach onMIT1003When Various

Features Are Used

Feature Channels AUC EOF FS

Intensity only 0.63 0.71 0.67
Lab color 0.67 0.71 0.69
PCA (11 components, 97.3 percent) 0.68 0.69 0.69
PCA (54 components, 99.7 percent) 0.73 0.71 0.72
PCA (192 components) 0.73 0.71 0.72
ICA (2 components) 0.69 0.72 0.70
ICA (5 components) 0.72 0.72 0.72
ICA (20 components) 0.72 0.71 0.72
OUR (11 ICA components) 0.73 0.73 0.73

Fig. 12. Performance of our approach on 100 testing images from
MIT1003 after various filters are applied.
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FS on 100 testing images). Second, it becomes possible to
further improve the performance with other amplitude fil-
ters after phase modulation (i.e., 0.03 in FS on 100 testing
images). In other words, we can iteratively use amplitude
and phase filters to refine the frequency spectrum so as to
gradually improve the overall performance and avoid local
optimum.

In addition, we conduct an experiment to validate the
robustness of the proposed evaluation methodology. In the
experiment, we re-weight our estimated saliency maps with
different Gaussian blobs. As shown in Table 3, AUC even
decreases when center-biased Gaussian re-weighting is
applied. This result may be mainly caused by the non-uni-
form sampling strategy of non-fixated pixels. As shown in
Fig. 3, both fixated and non-fixated pixels are center-biased,
and a minimum distance is enforced between fixated and
non-fixated pixels to avoid ambiguity. Although fixated pix-
els distribute nearer to image centers than non-fixated pix-
els, the influence of center-bias effect can be already
alleviated remarkably. As shown in Table 3, it becomes very
difficult to gain a remarkable improvement in AUC with
simple center-biased re-weighting. Moreover, we can see
from Table 3 that AUC and EOF perform as two comple-
mentary evaluation metrics when center-biased re-weight-
ing is applied. EOF increases along with center-biased re-
weighting while AUC gradually decreases, leading to stable
FS. This indicates that the proposed evaluation methodol-
ogy can avoid the influence of center-bias, which guarantees
fair comparisons.

5.2 Comparison with Knowledge-Based Models

Beyond the bottom-up models, we also compare our model
with the models that make use of the prior knowledge
obtained by supervised and unsupervised learning. Typi-
cally, models in the UL group follow the sparse coding the-
ory and propose to remove the redundancy in the input
images with pre-trained sparse codes (or independent com-
ponents, sparse functions, visual words). On the contrary,
models in the SL group usually have to extract a large num-
ber of low-level features (e.g., local energy and center-sur-
round contrast) and/or top-down factors such as
horizontal/vertical lines and face/person/car detectors. For
these features, the optimal feature combination strategy is
learned to measure the contribution of each feature to
saliency.

From Fig. 10, we can see that the best models from these
two groups, SP and BST, have comparable AUC scores.
However, models in the UL group usually have higher EOF
than the models in the SL group (e.g., ICL has an EOF up to
0.69). The reason is that models in the SL group often extract

a large number of features and many of them are redundant,
leading to a lower EOF. Another problem for using such a
large feature pool (e.g., 30 low-level features and four high-
level features in BST) is that the computational complexity
may be very high. As visual saliency estimation often acts as
a preprocessing step for other applications, the efficiency
should also be considered in designing saliencymodels.

Moreover, an important problem for models in the SL
group is the generalization ability as they are often trained
only on hundreds of images. Thus severe over-fitting risk
may arise in optimizing massive parameters. On the con-
trary, we train only 3� 3 ¼ 9 parameters in designing each
phase filter, which may alleviate the over-fitting risk to
some extent (e.g., the performance of our approach reaches
only AUC ¼ 0:71, EOF ¼ 0:73 and FS ¼ 0:72 if we train
5� 5 phase filters). To further prove this, we re-train all
3� 3 phase filters on the 120 images from Toronto. By
applying these phase filters on the 100 images of MIT1003,
we have AUC ¼ 0:72, EOF ¼ 0:73 and FS ¼ 0:72. The minor
changes in performance indicate that our approach has
lower over-fitting risk since we train only small convolution
templates.

Furthermore, we find that the learned 3� 3 phase filters
often have strong positive responses at centers and weak
negative responses at surrounding locations. This indicates
that phase filtering is similar to computing center-surround
contrasts in the frequency domain. From the perspective of
template-based contrast computation, some templates per-
form better in capturing figure-ground differences than their
neighbors. Therefore, convolving the frequency spectrum
with the learned phase filters actually enhances the response
of these templates and ensures that energy converges to
salient targets in inverse DFT. This finding also validates the
fifth principle for designing the saliency detector.

6 CONCLUSION

In this paper, we have explored the secret of image saliency
in the frequency domain. Through extensive experimental
studies, we find that the secret of saliency may mainly hide
in the phases of intermediate frequencies. In particular, the
signs of real-part and imaginary-part, once correctly esti-
mated, have remarkable contribution to separating salient
targets from distractors. By re-interpreting Fourier trans-
form as template-based contrast computation, we present a
set of principles for designing the saliency detector. Under
the guidance of these principles, we have designed a
saliency detector under the assistance of prior knowledge
obtained by both unsupervised and supervised learning.
From massive experiments, we find that the statistical infor-
mation encoded in spectral amplitude and phase can be an
effective cue for highly efficient visual saliency estimation.

From the results obtained so far, we find that combining
supervised and unsupervised prior knowledge can be a
possible research direction for visual saliency estimation. In
our future work, we will explore the way to mine the prior
knowledge from millions of images and to adaptively com-
bine these two types of priories in a unique saliency model
to process different types of visual scenes. Moreover, we
will try to formulate the problem of visual saliency estima-
tion as a binary classification task in the frequency domain.

TABLE 3
Performance of Our Approach on MIT1003 When
Center-Biased Gaussian Re-Weihting Is Applied

Center-biased Re-weighting AUC EOF FS

Gaussian s ¼ 0:1 0.64 0.77 0.70
Gaussian s ¼ 0:3 0.71 0.74 0.73
Gaussian s ¼ 0:5 0.72 0.73 0.73
No re-weighting 0.73 0.73 0.73
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