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Abstract—Real-time, accurate and robust target tracking on 
mobile devices is an important problem which can facilitate 
applications such as augmented reality. However, it is still 
unsolved, partly due to the mobile’s computing limitations. 
Compressive tracker performs favorably against state-of-the-art 
algorithms in terms of efficiency, accuracy and robustness, but as 
limited by the speed of feature matching, it cannot achieve real-
time tracking in mobile applications. In this paper, we propose a 
fast feature, i.e., selective Difference of Patch Robust 
Independent Elementary Features (DoP-RIEF).  DoP-RIEF is a 
global feature which is related to BRIEF. It uses histogram to fit 
feature distribution because it is more flexible than Gaussian, 
and intermediate results for subsequent classification can be 
stored, avoiding duplication of operations. Feature selection 
further deletes features which are less discriminative and 
improves the feature quality. Through these two steps, the 
feature matching can be accelerated significantly and at the same 
time tracking accuracy and robustness are improved. Compared 
with compressive tracker on 17 publicly available sequences, our 
method outperforms it in terms of both robustness and accuracy. 
In addition, the speed is about 270 frames per second which is 8 
times faster than the compressive tracker. To further evaluate 
our algorithm in natural scenes with obvious scale, rotation, and 
illumination variations, we test it on Stanford datasets and 
Peking University landmark datasets, and the accuracy is above 
90%.  

Keywords-real-time tracking; augmented reality; fast global 
feature; feature distribution fitting; feature selection 

I.  INTRODUCTION 
Augmented Reality (AR) is an emerging technology to 

render and superimpose virtual information onto the real scene. 
It enhances the user experience in terms of visual and auditory 
sensations, and deepens understanding of real environment. 
Currently it has already been applied to education, military 
aviation, historic restoration, technical training, games and 
many other fields. 

Tracking is a critical module in AR. Tracking speed, 
accuracy, and robustness directly impact on the quality of 
rendering and display, and larger tracking errors may lead to 

displayed errors. The main issues of tracking technology on 
mobile devices include: 

a) Real-time: Augmented reality system requires virtual 
information to be displayed without any delay. Real-
time directly restricts the availability of an augmented 
reality system; 

b) Accuracy: Augmented reality systems needs tracking 
module to provide precise location of the target without 
jitters. Accuracy is a prerequisite for the correct fusion 
of the virtual information and real scene; 

c) Robustness: Tracking module should handle occlusion, 
blur, and illumination, scale, rotation variations in 
complex natural scenes. 

However, target tracking which restricts the availability of 
an AR system is still under developing and leaves many 
unsolved technical issues. The most important reason is the 
mobile’s computing limitations. Moreover, there exist obvious 
scale, rotation, and illumination variations in natural scenes. In 
this work, we focus on the tracking module, aiming to improve 
the tracing accuracy and robustness with less computation time. 

In classic computer-vision-based tracking methods, the 
target appearance model is learned first. Then the location 
(Kalman filter [1, 12], particle filter [2, 3], and so on) of the 
target area in the subsequent frames is estimated by matching 
with the learned model. The methods of describing the target 
appearance can be categorized as local feature description, 
global feature description, and hybrid (local and global) feature 
description. 

In the methods based on local feature description, a set of 
local features are extracted from two adjacent frames firstly. 
Then, the pairs of matching features are found to determine the 
location of the target in next frame. SIFT [13] and SURF [15] 
are widely used because of the matching stability, and they are 
invariant with respect to image transformation and illumination. 
However, the speed of feature extraction and matching is not 
high enough, especially in mobile augmented reality or other 
real-time applications where tracking speed is a key issue. 
Therefore, other faster features would be adopted such as 
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FAST [16], BRISK [17], ORB [9] and so on. Wagner [14] 
modified SIFT and Fern features to make it suitable for fast 
tracking. However there is a drawback with the tracking 
methods based on these local features. That is, when the target 
or camera is moving fast in the scene, images will blur 
significantly, then in these situations local features may not be 
efficiently extracted, thereby affecting subsequent tracking. 

Methods based on global statistical features tend to 
consider the targets as a whole and extract the overall statistical 
feature descriptors to represent the target appearance model. To 
some extent, these methods do not depend on local details,  
thus having better robustness when the target is blurred or 
partially occluded. In Comaniciu’s work [1], histogram-based 
target representations were used and with kernel regularization 
and mean-shift algorithm, they got a fast and robust tracker. In 
Bradski’s work [7], a computer vision color tracking algorithm 
called CAMSHIFT was developed and applied to tracking 
human faces. In Zhang’s work [10], they proposed a 
compressive tracker, with a global appearance model based on 
features extracted from the multi-scale image feature space 
with data-independent basis. It runs in real-time on PC and 
performs favorably against state-of-the-art algorithms. 
However, as limited by the speed of feature matching, it cannot 
achieve real-time tracking in mobile applications. 

Some methods extract both local and global features which 
are shown to improve the tracking accuracy. In Zhong’s work 
[8], they proposed a robust appearance model that exploited 
both holistic templates and local representations. holistic 
templates are incorporated to construct a discriminative 
classifier that can effectively deal with cluttered and complex 
background. Local representations are adopted to form a robust 
histogram that considers the spatial information among local 
patches with an occlusion handling module. However, under 
certain constraints, such as mobile applications, these methods 
can not meet the real-time requirement, although the accuracy 
and robustness are satisfactory. 

According to the above analysis about the three categories 
of methods on speed, accuracy and robustness, we focus on 

methods based on global features. In this paper, we propose a 
fast global feature: selective DoP-RIEF (Difference of Patch 
Robust Independent Elementary Features). This feature is a 
modified version of BRIEF (Binary Robust Independent 
Elementary Features) [6] and designed to describe the target 
with a global representation model. BRIEF is a local feature 
descriptor first proposed by Michael Calonder, and is very fast 
both to build and to match. The advantage of BRIEF is its high 
discrimination even when using relatively few bits, and it can 
be computed by simple intensity difference tests.  

In our work, we take the advantages of BRIEF in speed and 
accuracy, and extend it from the pixel-level to block-level, 
modifying it to be a global feature which can describe the 
whole target. It uses histogram to fit feature distribution 
because it is more flexible than Gaussian, and intermediate 
results for subsequent classification can be stored, avoiding 
duplication of operations. Feature selection further deletes less 
discriminative features and improves the feature quality. 
Experiment results show that through histogram feature 
distribution fitting and feature selection, feature matching is 
accelerated significantly, and at the same time tracking 
accuracy and robustness are improved.   

We use the system framework of compressive tracker and 
compare them in terms of speed, accuracy and robustness. 
Experiment results show that with selective DoP-RIEF, our 
algorithm is more robust than compressive tracker. The speed 
is about 270 frames per second on the PC with Dual-Core 
2.93GHz CPU which is about 8 times faster, and the result is 
more accurate. To further evaluate our algorithm in natural 
scenes with obvious scale, rotation, and illumination variations, 
we test it on Stanford datasets and Peking University landmark 
datasets, and the accuracy is above 90%. It performs favorably 
against state-of-the-art algorithms and is more suitable for 
tracking on mobile devices for augmented reality. 

The rest of the paper is organized as follows: Section 2 
gives the problem statement. Section 3 describes the details of 
our selective DoP-RIEF feature. Section 4 presents experiment 
results on some challenging sequences and the compared 

(1)

(2)

Fig.1. framework of our algorithm. (1) initial part of the tracker in the first frame. (2) tracking process for subsequent frames 
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results. We also discuss the extension of our algorithm to scale 
and rotation variations. Section 5 concludes the paper. 

II. PROBLEM STATEMENT 
As motivated in the previous section, we design our 

algorithm based on global features, and use the framework of 
compressive tracker for the tracking module. Fig. 1 shows the 
algorithm framework. It consists of two parts. The first part is 
tracking initialization, and the second one is tracking and 
updating.  

In the first part, the exact location of the target in the first 
frame is given, and the location is represented by a rectangular 
box. A set of positive samples are selected at the closest 
distance to the target area, and a set of negative samples are 
selected far away from the target area. Then the features of all 
the samples are extracted, where each feature corresponds to an 
N-dimensional vector. Next, the most discriminative n 
dimensional features are selected from N-dimensional features. 
Finally a Bayes classifier is trained with the selected features of 
positive and negative samples. 

In the second part, when looking for the target in the next 
frame, the first step is to predict the initial search location of 
the target, then take samples around the location, and extract 
the feature descriptors for each sample. With the extracted 
descriptors, the Bayes classifier is used to calculate all the 
response values. The one getting the maximum response value 
is selected as the new target location. Finally, new positive and 
negative samples are extracted according to the new target 
location and the classifier is updated with the new samples. 

assuming all elements in a feature vector are independently 
distributed, and using a Bayes classifier, we can calculate the 
response value res(v) for a given feature v with equation (1), 
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y ∈ {0, 1} is a binary variable which represents the sample 
label. To simplify this equation, we also assume that the priori 
probabilities are equal, that is p(y = 1) = p(y = 0). So equation 
(2) is finally used to calculate the classifier response. 
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According to the above process description, the speed and 
accuracy of feature matching, to a great extent, determine the 
classification performance. The classifier calculates response 
value res for each sample as the probability of containing the 
target, therefore, the dimensions of the feature and 
computational complexity of the probability will directly affect 
the speed of tracking. Meanwhile the accuracy of feature 
distribution fitting will directly affect the accuracy of the 
tracking algorithm. Based on this analysis, we focus on 
optimization of the feature quality, and propose a fast global 
feature, i.e. selective DoP-RIEF. Through feature distribution 
fitting and feature selection, the classification speed and 
accuracy are greatly increased, and then the performance of the 

tracking algorithm gets improved. The details of our selective 
DoP-RIEF will be given in the next section.  

III. SELECTIVE DOP-RIEF 
In this section, we will first give a brief review of BRIEF 

and then describe the details of DoP-RIEF in tracking process 
including feature extraction, feature distribution fitting, feature 
selection, classification, and updating. 

A. Brief Review of BRIEF 
BRIEF is first proposed by Michael Calonder, and is very 

fast both to build and to match. The advantage of BRIEF is its 
high discrimination even when using relatively few bits, and it 
can be computed using simple intensity difference tests. Test τ 
on patch p can be defined as 

                1 if  ( ) ( )
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                    (3) 

where p(x) is the pixel intensity in a smoothed version of p at x 
= (u, v) where u and v are the horizontal and vertical 
coordinates of x. Choosing a set of nd(x, y)-location pairs 
uniquely defines a set of binary tests. And the BRIEF 
descriptor is the nd-dimensional bit-string 

                1
1

( ) 2 ( ; , )
d d

i
n i ii n

f p p x yτ−
≤ ≤

=∑                     (4) 

Generating a length nd bit vector leaves many options for 
selecting the nd test locations (xi, yi) in a patch of size S × S. 
Experiment result shows that Gaussian distributionሺ0, ଵଶହ Sଶሻ 
outperforms other sampling geometries. 

B. Feature Extraction 
In order to describe the target with global representation 

and take the advantages of BRIEF in speed and accuracy, our 
DoP-RIEF feature extends the pixel-level operations of BRIEF 

Fig.2. fitting process for each element of feature vector. Positive 
samples(object) use pairs near the target location, and negative 
samples(background) use pairs far away from the target location. 
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to the block-level operations. The target area is uniformly 
divided into R rows and C columns, where the value of each 
patch is the sum of all the pixel values in it. With integral 
image, the value of each patch can be efficiently calculated. N 
pairs of patches are selected and the difference of each pair is 
calculated as the value of the feature. The N-dimension vector 
forms the descriptor of the target. In most cases, the targets are 
in the center of the bounding boxes, so the Gaussian 
distribution is considered as the most suitable sampling 
geometry. We use the same parameters ሺߤ,  ሻ as the ones ofߪ
BRIEF and set X, Y to be independent, that is 
X~Gaussianሺ0, ଵଶହ ,ଶሻ, Y~Gaussianሺ0ܥ ଵଶହ ܴଶሻ. The features are 
not binarized in order to retain enough information for feature 
distribution fitting in the next step. 

C. Feature Distribution Fitting 
The fitting accuracy of feature distributions for positive and 

negative samples directly affects the accuracy of the Bayes 
classifier. Compressive tracker assumes that the distribution of 
each feature is Gaussian. Therefore, it calculates the mean and 
variance of each feature according to the statistical result, and 
updates the mean and variance in the tracking process. But 
experiment results show that such assumption has two 
disadvantages: 

a. In many scenes, feature distributions do not satisfy the 
Gaussian assumption, and may even have multiple peaks 
(Fig.3 (a)). So it is not always accurate to fit the 
distributions with Gaussian. 

b. When the classification is calculated with a Gaussian 
function to get the probability, it would involve a large 
number of exponential and logarithmic arithmetic 
operations. Since the response value for each sample needs 
to be calculated, the computational complexity will 
increase greatly. For some applications that are limited by 
the computing resources, such as augmented reality on 
mobile devices, these operations would become a 
bottleneck. 

Our DoP-RIEF uses histograms to fit the distributions of 
the features, and builds a look-up table for each logarithm item, 
avoiding the above two disadvantages. The algorithm is 
illustrated as follows. Suppose the location of the target is 
initialized in the first frame, and the center coordinate of the 

target is (x0, y0). Then a set of positive samples are selected 
near the center, with the center coordinates in the range (x0 + 
Δx0,  y0 + Δy0), where |Δx0| < tx0, and |Δy0| < ty0. The 
negative samples is far away from the target center, with the 
center coordinates in the range (x0 + Δx1, y0 + Δy1), where tx1 
< |Δx1| < tx2, ty1 < |Δy1| < ty2, tx1 > tx0, ty1 > ty0. 

Since the elements in a feature vector are independent of 
each other, each distribution can be fitted without referring to 
others. After the division of the target into R rows and C 
columns, the size of each patch is set to be pw height and pc 
width in pixels. Each histogram contains h bins. For grayscale 
images, the difference for each pair of patches is in the range   
[-pw * pc * 256, pw * pc * 256]. And these values can be 
discretized into the bins of the histogram. For the value v, the 
num of bin it belongs to is calculated as follows. 

                  * *2*256pw pcbinLength
h

=                          (5) 

                       
2

v hbinNum
binLength

= +                             (6) 

In equation (5), binLength is the range covered by each bin. In 
order to avoid negative values, the result is increased by half of 
h in equation (6) to adjust the binNum to a non-negative value.  

In order to fit the distribution of each element in the feature 
vector, the feature values for positive and negative samples are 
accumulated separately with histograms. Finally, the 
histograms are normalized so that the sum of all the bins is 1. 
These histograms are more accurate and suitable to fit the 
distributions. The fitting process is shown in Fig.2. 

D. Feature Selection 
Another advantage of using histogram for feature 

distribution fitting is that it is convenient for feature selection. 
Features with higher degree of discrimination can be selected 
to get higher tracking accuracy. With feature selection, the 
algorithm can adapt to different applications which require 
different speed. That is, on mobile devices less features would 
be used, while in PC applications more features would be used. 

(a)                                                                  (b)                                                                      (c) 
 

Fig. 3. transform result of each step for feature selection. (a) the original feature histogram for object and background. 
(b) the log likelihood ratio calculated with the original histogram. (c) probability distribution of object and background 
with the tuned feature. 

139



With the histogram of the positive and negative samples, 
we can refer to Robert’s work [11] for feature selection. In 
order to compute the discrimination for each element of the 
feature vector, the histograms are transformed first. The 
transformation is computed as a log likelihood ratio of the 
feature value distributions for object versus background. This 
tuned feature is formed as the log likelihood ratio of the class 
conditional feature distributions. The log likelihood ratio of for 
each bin i is calculated as equation (7). 

                             ( )( ) log
( )

obj iratio i
bkg i

⎛ ⎞= ⎜ ⎟
⎝ ⎠

                              (7) 

obj(i) is the value of the ith bin in the object histogram, and 
bkg(i) is the value of the ith bin in the background histogram. 
In order to prevent the error of division by zero, obj(i) is set to 
be max{obj(i), δ}, and bkg(i) is set to be max{bkg(i), δ}, 
where δ is a small value.  

In order to measure the discrimination that tuned feature 
induces between object and background classes, the two-class 
variance ratio can be calculated. We could proceed by 
reaccumulating new class conditional distributions for the 
tuned feature and then calculate the variance with the new 
distributions. But for efficiency, the distributions obj(i) and 
bkg(i) that already computed for the features can be used. 
Through equation (8) 

                             2 2var( ) ( ) ( )x E x Ex= −                                (8) 

the variance of the tuned feature for the object with respect to 
object class distribution can be computed as 

22var( ) ( )* ( ) ( )* ( )
i i

obj obj i ratio i obj i ratio i⎡ ⎤= − ⎣ ⎦∑ ∑     (9) 

For background, the variance is 

22var( ) ( )* ( ) ( )* ( )
i i

bkg bkg i ratio i bkg i ratio i⎡ ⎤= − ⎣ ⎦∑ ∑    (10) 

Variance of the feature over both object and background is 
calculated by equation (11) and (12). 

( ) ( )( )
2

obj i bkg iall i +=                               (11) 

22var( ) ( )* ( ) ( )* ( )
i i
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Finally, the discrimination for the feature can be defined as 

                            var( )
var( ) var( )

alldis
obj bkg

=
+

                            (13) 

In this way, features with larger dis can be selected with higher 
priority for subsequent classification. Fig.3 shows the 
transformation result of each step for feature selection. 

E. Classification and Updating 
Since the histograms for positive and negative samples 

have been generated, the logarithm item in equation (2) can be 
calculated easily for each vi. The advantage of using histogram 
is that these values need to be calculated only once and can be 
stored in a look-up table. Then, in the classification stage, the 
classifier only needs to calculate the bin to which a given 
feature belongs, with equation (6), and looks up the table for 
the logarithm value. In this way, the classification calculations 
are accelerated significantly. 

As the target moves in the scene, the appearance and 
background will gradually change. Therefore, the feature 
histograms should be incrementally updated in the tracking 
process. The updating method is illustrated as follows: 

Suppose that after tracking the object for i frames, the 
histogram of the object is (o1, o2, … … , on), and the histogram 
of the background is (b1, b2, … … , bn). In the (i+1)th frame, 
the histogram are (o1', o2', … … , on') and (b1', b2', … … , bn') 
for object and background respectively. Then the histograms 
are incrementally updated to (o1 * rate1 + o1'* (1 – rate1), o2 * 
rate1 + o2' * (1-rate1), ... …, on * rate1 + on'* (1- rate1) ) and 
(b1 * rate2 + b1'* (1 – rate2), b2 * rate2 + b2' * (1-rate2), ... …, 
bn * rate2 + bn'* (1- rate2) ) where rate1 and rate2 are the 
learning parameters and their values are between 0 and 1. 
Different learning rates can be set for object and background 
respectively.   

Fig. 4.  Average error for each sequence. Y axis is average error, X axis is the sequence num: 1.sylv, 2.board, 
3.bolt, 4.lemming, 5.skating, 6.football, 7.singer, 8.car, 9.faceooc2, 10.girl, 11.animal, 12.shaking, 13.twinning, 
14.david, 15.faceocc, 16.coke11, 17.dollar. For each sequence, we compare compress tracker(green), our 
algorithm without feature selection(red) and our algorithm with feature selection(blue). 
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IV. EXPERIMENTS 
At the beginning of this section, we compare our algorithm 

with compressive tracker on 17 challenging sequences(sylv, 
board, bolt, lemming, skating, football, singer, car, faceooc2, 
girl, animal, shaking, twinning, david, faceocc, coke11, dollar). 
In Zhang’s work, they have already compared compressive 
tracker with fragment tracker [4], the online AdaBoost method 
[5], the Semi-supervised tracker [18], the MILTrack algorithm 
[19], the lଵ-tracker [20], the TLD tracker [21], and the Struck 
method [22]. Compressive tracker outperforms these trackers. 
Therefore, in this paper, we only compare our algorithm with 
compressive tracker. For fair comparison, we use the source 
code provided by the author with tuned parameters for best 
performance. Our algorithm and compressive tracker are both 
complemented in C++ and run on a Dual-Core 2.93GHz CPU 
with 3.5 GB RAM. In order to evaluate the ability to handle 
situations of scale and rotation variations, we also extend our 
algorithm and test it on Stanford datasets(18 sequences) and 
Peking University landmark datasets(20 sequences).  

A. Experimental Setup 
In the initial step, the bounding box of the target is divided 

into R=30 rows and C=30 columns uniformly. The initial 
feature length N is set to 200. For feature distribution fitting, 
the number of bins in a histogram is set to h=30. For feature 
selection, the threshold for dis is set to 1.5, which means that 
only the elements with dis larger than 1.5 will be used for 
classification. The learning rate rate1 and rate2 are set to 0.85. 
For fair comparison, we use the same sampling parameters for 
positive and negative samples as the ones of compressive 
tracker.  

B. Accuracy Analysis 
We use the center location error to evaluate the two 

algorithms. This metric can be measured with manually labeled 
ground truth data. We compute the distance between the center 
coordinate of the ground truth and our algorithm for each frame, 
and then get the average error for the whole sequence. We also 
evaluate the accuracy of our algorithm without feature selection. 
Fig.4 shows the quantitative results, and Fig.5 shows 
screenshots of some tracking results.  

Our tracker gets higher accuracy in most of the sequences 
than compressive tracker. The average error of compressive 
tracker is 49.05 pixels, while the average error of our algorithm 
is 14.35 pixels. Both compressive tracker and our algorithm use 
the same Bayes classifier to calculate the response value as the 
probability of containing the target. Therefore, the accuracy of 
the tracker mainly depends on the accuracy of the feature 
distributions and the discrimination of the features. Through 
our selective DoP-RIEF, the feature distributions are fitted with 
histograms which are more flexible than Gaussian and can be 
used to estimate much more types of distributions. On the other 
hand, the quality of the features gets further improved through 
feature selection. In the process of feature selection, only high-
quality features are retained, because their discrimination 
between target and background are higher than a predefined 
threshold. In this way, the noise interference is reduced.  

In the sequences of lemming, skating and car, the average 
errors of compressive tracker are very large because the tracker 
loses the targets. In the sequence of bolt, our algorithm without 
feature selection also loses the target. Our algorithm with 

Fig. 5. Tracking results compared with compressive tracker. Green boxes are the ground 
truth, blue boxes are the results of our algorithm, and the red boxes are the results of 
compressive tracker. Each row for a sequence. Row 1: sylv. Row 2: board. Row 3: 
faceocc2. Row 4: animal. Row 5: shaking. 
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feature selection gets stable performance and the average errors 
are relatively small.  

However, DOP-RIEF with feature selection perform worse 
than that without feature selection in a few sequences. The 
reason is that with feature selection, the features with low 
discrimination have been deleted, which may not be totally 
useless for tracking. In general, selective DoP-RIEF provides 
the Bayes classifier with higher quality features. 

C. Efficiency Analysis 
In order to accurately determine the target location, a 

sufficient number of samples need to be obtained in each frame. 
In our experiment, the average search radius is 20 pixels and 
we will get more than 1000 samples. Therefore, the 
computational complexity of calculating the response values 
will be the bottleneck of tracking efficiency. Since histograms 
are used to store logarithm items for classification in a look-up 
table. Then, in classification stage, the classifier only needs to 
calculate the bin to which a given feature belongs, and looks up 
the table for the logarithm value. In this way, the classification 
calculations are accelerated significantly. The average speed of 
our algorithm without feature selection is 0.0045 seconds per 
frame. With feature selection, as the features with low 
discrimination are deleted, the average speed is increased to 
0.0037 seconds per frame, while the average speed of 
compressive tracker is 0.031 seconds per frame. So our 
algorithm is about 8 times faster than compressive tracker. Fig. 
6 shows the comparison result. With this speed, our algorithm 
may track 270 frames per second on a PC with Dual-Core 
2.93GHz CPU and therefore it is more suitable for mobile 
applications. 

D. Scale and Rotation Variations 
Scale and rotation variations of the targets exist in most of 

augmented reality applications, so the tracker should be able to 
track the targets and simultaneously handle scale and rotation 
variations. On the basis of the framework of our algorithm, we 
expand the search range. In addition to searching the target 
with a box as large as the one in the previous frame, 4 more 
extra boxes are used: the first one with larger size, the second 
one with smaller size, the third one with a left-hand rotation, 
the fourth one with a right-hand rotation. All the response 
values are calculated, and the box with the maximum response 
value is chosen as the location area of the target. The 
experiment results show that the additional 4 boxes are enough 
for handling scale and rotation variations. In our experiments, 
the size change is one tenth of the original box and the angle of 
rotation changes is 3 degrees.  

  We test our algorithm on the Stanford datasets(18 
sequences) and Peking University landmark datasets(20 
sequences). Both datasets involve scale, rotation and 
illumination variations. In terms of accuracy evaluation, we use 
the ݁ݎܿݏ ൌ ሺோைூתோைூಸሻሺோைூோைூಸሻ , where ROIT is the tracking 
bounding box and ROIG is the ground truth bounding box. If 
the score is larger than 0.75 in one frame, the tracking result is 
considered as a success. And the results show that the accuracy 
of our algorithm is above 90%. Fig.7 and Fig.8 show 
screenshots of some tracking results.  

V. CONCLUSION 
In this paper, we proposed the selective DoP-RIEF which 

can be used for mobile real-time tracking in augmented reality. 
Following the framework of feature extraction, feature 
distribution fitting with histogram, feature selection, 
classification, and updating, our algorithm gains higher speed 
and accuracy, compared with compressive tracker. Our 
algorithm has better robustness in scenes of illumination 
variation and image blur. With the expanded search range, it 
can also handle rotation and scale variations. Therefore, with 
the advantages of speed, accuracy and robustness, our 
algorithm is more suitable for applications on mobile devices 
with limited computational resources. 
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Fig. 7 Experiment results on Stanford datasets 

Fig. 8 Experiment results on Peking University landmark datasets 
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