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a b s t r a c t

With the recent explosion in the use of video surveillance in security, social and industrial applications, it is

highly desired to develop “smart” cameras which are capable of not only supporting high-efficiency surveil-

lance video coding but also facilitating some content analysis tasks such as moving object detection. Usually,

background modeling is one of fundamental pre-processing steps in many surveillance video coding and anal-

ysis tasks. Among various background models, Gaussian Mixture Model (GMM) is considered as one of the

best parametric modeling methods for both video coding and analysis tasks. However, a number of floating-

point calculations and division operations largely limit its application in the hardware implementation (e.g.,

FPGA, SOC). To address this problem, this paper proposes a fixed-point Gaussian Mixture Model (fGMM),

which can be used in the hardware implementation of the analysis-friendly surveillance video codec in smart

cameras. In this paper, we first mathematically derive a fixed-point formulation of GMMs by introducing sev-

eral integer variables to replace the corresponding float ones in GMM so as to eliminate the floating-point

calculations, and then present a division simulation algorithm and an approximate calculation to replace the

division operations. Extensive experiments on the PKU-SVD-A dataset show that fGMM can achieve com-

parable performance with the float GMM on both surveillance video coding and object detection tasks, and

outperforms several state-of-the-art methods remarkably. We also implemented fGMM in FPGA. The result

shows that the FPGA implementation of our fGMM can process HD videos in real-time, just requiring 140 MHz

user logic and 622 MHz DDR3 memory with 64-bit data bus.

© 2015 Elsevier Inc. All rights reserved.
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. Introduction

In recent years, surveillance cameras have been widely deployed

nd video surveillance systems have reached every corner of our

odern society. For example, more than 5.9 million surveillance cam-

ras have been deployed in UK; while there are up to more than

0 million surveillance cameras in China. Obviously, with the explo-

ion in the use of video surveillance, it is highly deserved to develop

smart” cameras which, in addition to image capture circuitry, are

apable of extracting application-specific information from the cap-

ured images [1]. Such smart cameras can be used in a wide range

f security, social and industrial applications, including unattended

urveillance [1], in-home nanny monitoring [2], road surveillance and

raffic control [3], robot guidance and vehicle control [4].
∗ Corresponding author at: National Engineering Laboratory for Video Technology,

chool of EE & CS, Peking University, Beijing, China. Fax: +86 10 62751638.
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Usually, existing surveillance systems adopt the common video

odecs such as H.264/AVC with general settings to compress the cap-

ured videos for weeks or months. Some systems even set the com-

ression rate to 300:1 or higher to further reduce network band-

idth and storage capacity. On the other hand, these systems often

onduct the video analysis task (e.g., object detection) on the whole

rames after decoding the bit-stream from cameras. The better the

uality of the frames, the higher the performance of video analysis

nd search might achieve. Thus a high compression ratio may in-

vitably influence the accuracy of video analysis. To partially solve

his dilemma, as pointed out by [2], the video codec in a “smart” video

urveillance system should be analysis-friendly (as Fig. 1 shows),

hich can not only support high-efficiency surveillance video cod-

ng but also facilitates some content analysis tasks such as object

etection.

To achieve high-efficiency coding performance, a background-

odel-based coding method was proposed in [5,6] for surveillance

ideos, in which the background pictures are modeled from the orig-

nal input frames so as to provide better reference for encoding the

http://dx.doi.org/10.1016/j.cviu.2015.09.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2015.09.006&domain=pdf
mailto:yhtian@pku.edu.cn
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Fig. 1. The conceptual framework of a “smart” video surveillance system with the analysis-friendly surveillance video codec in the cameras [2].
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following frames, and these background pictures can be encoded

into the bitstream as non-display frames to guarantee the decoding

match. Experimental results showed that this method could obtain a

remarkable compression gain on surveillance videos over H.264/AVC

High Profile. It should be noted that this background-model-based

coding technology has been adopted in IEEE 1857-S (AVS) and is ex-

pected to be implemented in hardware codecs for different video

surveillance applications [2]. Meanwhile, background modeling is

also one of fundamental pre-processing steps in surveillance video

analysis (e.g., [3,7–10]). Many practical evidences have validated that

a clean background can be very helpful for analysis tasks such as

foreground segmentation and object detection. Therefore, to develop

such a smart video surveillance system with the analysis-friendly

video codec, it is crucial to design a background modeling method

suitable for both video coding and content analysis.

Basically, background modeling in surveillance video coding

should be done with low computational complexity and low mem-

ory cost. Till to now, two background modeling methods have been

proposed in the literature for surveillance video coding. In [11],

Zhang et al. proposed a Segment-and-Weight based Running Aver-

age (SWRA) method to approximately calculate the background by

assigning a larger weight on the frequently-appearing values in the

averaging process. As one of low-complexity background modeling

methods, it can offer rather good reference for video coding, and

more importantly, can be easily implemented in the hardware codec.

In [12], Paul et al. proposed to embed the Gaussian Mixture Model

(GMM) background generation procedure and the background pre-

diction into H.264/AVC. Compared with SWRA, GMM is computa-

tionally complex since it has many floating-point calculations and

division operations.
For video analysis, there are many methods in the literature [9],

.g., Frame Differencing, Temporal Median Filtering, Gaussian Mixture

odels (GMMs), Bayesian, Kernel Density Estimation (KDE), Code-

ook methods. Among them, GMM [13–15] is considered as one

f the best parametric background modeling methods, due to its

ood performance and high robustness over different scenes. Re-

ently, many new background modeling algorithms, such as ViBe

16], PBAS [17], SOBS [18], Eigenbackground [19] and Neural-fuzzy

odel based approach [20], have been proposed. Totally speaking,

hey show promising performance on several video analysis tasks,

nd mostly even outperform GMMs. However, ViBe and PBAS are not

ble to generate backgrounds and thus cannot be embedded into the

odec so as to provide prediction reference for video coding, while

OBS and Eigenbackground need massive calculations and thus are

ifficult to implement in the codecs with low computational com-

lexity. On the other hand, as a variant of the simple running average

ethod, SWRA [11] is not analysis-friendly. It cannot model dynamic

ackground effectively and thus does not satisfy the needs for many

ideo analysis tasks. Thus to the best of our knowledge, GMM should

e the best background modeling method for both video coding and

ideo analysis that can be found in the literature till to now.

However, the floating-point calculations and division operations

n GMM still present a significant obstacle for its wide application

n the hardware implementation of video codecs. For example, if

e want to empower the cameras with the analysis-friendly video

odec, we need to implement the GMM in FPGA and even SOC. To

olve this problem, some recent works (e.g., 21–24) proposed sev-

ral hardware implementation methods of GMM. Among them, [21]

s the newest one and it can process the HD video in real-time.

otally speaking, all these methods adopt the similar strategy by
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sing data conversion to accelerate the processing speed (i.e., using

he fixed number of bits to represent the integer and fractional parts).

bviously, this strategy is not an optimization of the GMM model it-

elf. What is more, due to the approximate representation of the frac-

ional parts in the model, the quality of the constructed background

ill decrease inevitably.

In this paper, we propose a fixed-point Gaussian Mixture Model

fGMM) method for analysis-friendly surveillance video coding. Dif-

erent from previous works, the proposed fGMM eliminates the

oating-point calculations and division operations while being ca-

able of achieving comparable performance. Towards this end, we

athematically derive a fixed-point formulation of GMMs by intro-

ucing several integer variables to replace the corresponding float

nes in GMM so as to eliminate the float-point calculations. After this,

e adopt a division simulation algorithm and an approximate calcu-

ation to replace the division operations. Experimental results show

hat this approximate calculation has little influence on the quality

f the modeled background pictures. In addition, our analysis also

hows that fGMM saves 46% memory cost compared with its float

ersion.

Extensive experiments were performed on the PKU-SVD-A

ataset1. This dataset consists of more than 10 videos with differ-

nt resolutions (ranging from SD, 720p, 1600 × 1200, and 1920 ×
080) and is online publically available. Experimental results show

hat both in surveillance video coding and object detection tasks, the

roposed fGMM can achieve comparable performance with the float

MM, and also outperforms several state-of-the-art methods (e.g.,

11,21,24]) remarkably. We also implemented our fGMM in FPGA. The

esult shows that fGMM has lower hardware requirements (e.g., user

ogic, memory) to process HD video in real-time, compared with [21].

Our main contributions can be summarized as follows:

(1) A fixed-point formulation of GMMs is mathematically derived

by introducing several integer variables to replace the corre-

sponding float ones in GMM so as to eliminate the floating-

point calculations. Different from other data conversion meth-

ods, the proposed fGMM does not introduce any approximate

presentation to convert float into integer.

(2) A division simulation algorithm and an approximate calcula-

tion are further proposed for fGMM to replace the division op-

erations. As a result, fGMM can complete all the calculations

using integers to achieve comparable performance with the

float version of GMM.

(3) Without floating-point calculations and division operations,

fGMM can be easily implemented in hardware devices. In our

work, fGMM is implemented in FPGA to process HD videos

in real-time, just requiring 140 MHz user logic and 622 MHz

DDR3 memory with 64-bit data bus.

The remainder of this paper is organized as follows: Section 2

riefly reviews the Gaussian Mixture Model. The proposed fGMM is

resented in Section 3. Experimental results are shown in Section 4.

ection 5 mainly presents the FPGA implementation of fGMM and

ection 6 concludes this paper.

. Gaussian Mixture Model

Gaussian Mixture Model (GMM), firstly proposed by Stauffer and

rimson [13], is a widely-used parametric background modeling

ethod. Its basic idea is to use several Gaussian distributions to de-

cribe a pixel, some of which represent the background in the scene

hile the others characterize the foreground. To facilitate the online

odel learning, KaewTraKulPong and Bowden [14] proposed to use

xpectation Maximization (EM) to update the parameters. Thus this
1 http://mlg.idm.pku.edu.cn/resources/pku-svd-a.html

μ

ection briefly reviews the GMM in [14] and then discuss the possible

roblems when used in hardware implementation.

.1. GMM

GMM models each pixel by a mixture of K Gaussian distributions.

or each Gaussian distribution, there is a weight parameter w rep-

esenting the time proportion this pixel stays. The greater the value

f w is, the longer this pixel stays in this distribution. The Gaussian

unction is shown as follows:

f (x) = 1

σ
√

2π
e− (x−μ)2

2σ2 , (1)

here σ is the standard deviation. A smaller value of σ means a more

table distribution. The background pixel value tends to be the one

hich stays the longest and keeps static in the video. Therefore, static

ackground tends to form tight clusters in the Gaussian distributions

hile moving ones form widen clusters. The measurement of this

iden or tight cluster is called the fitness value φN
k

. It is calculated

y

N
k = wN

k

σ N
k

, (2)

here wk and σ k are the weight and the standard deviation of the kth

aussian distribution respectively.

To allow the model to adapt to the changes in the video, an update

cheme is applied. In this scheme, every new pixel value is checked

hrough the existing model components in order of fitness, while the

rst matched Gaussian component will be updated. If it does not find

matched component, a new one will be added with a large standard

eviation and a small value of the weighting parameter. The match

ule is

bs(x − μk) ≤ Th × σk, (3)

here abs(i) is the absolute value function, x means the value of the

urrent pixel, μk is the mean value of the kth Gaussian distribution,

nd Th is a threshold value (always setting as 2 or 3). After finding the

atched Gaussian distribution, the parameters will be updated using

he EM algorithm.

.2. The EM algorithm

To update the parameters of Gaussian distributions, the EM al-

orithm [14] begins the estimation of the GMM by using sufficient

tatistics update equations, then switches to L-recent window ver-

ion after the first L samples are processed. That is, it uses different

pdating strategies in different processing stages. When the window

ize does not reach the threshold L, the EM algorithm can be charac-

erized as follows:

N+1
k

= wN
k + 1

N + 1

(
p(wk|xN+1) − wN

k

)
, (4)

N+1
k

= μN
k + p(wk|xN+1)∑N+1

i=1 p(wk|xi)

(
xN+1 − μN

k

)
, (5)

N+1
k

= �N
k + p(wk|xN+1)∑N+1

i=1 p(wk|xi)

((
xN+1 − μN

k

)(
xN+1 − μN

k

)
− �N

k

)
.

(6)

therwise, the EM algorithm is shown as follows:

N+1
k

= wN
k + 1

L

(
p(wk|xN+1) − wN

k

)
, (7)

N+1
k

= μN
k + 1

L

(
p(wk|xN+1)xN+1

wN+1
k

− μN
k

)
, (8)

http://mlg.idm.pku.edu.cn/resources/pku-svd-a.html
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Fig. 2. A sample of floating-point number conversion to a fixed-point number in

fpGMM.

Fig. 3. The sequence structure for video coding and object detection.
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k

= �N
k + 1

L

(
p(wk|xN+1)

(
xN+1 − μN

k

)(
xN+1 − μN

k

)
wN+1

k

− �N
k

)
.

(9)

From (4) to (9), wN
k

and μN
k

denote the weight and the mean value

of the kth Gaussian Mk respectively when the window size equals to

N, �N
k

is the square of σ N
k

while σ N
k

means the variance of Mk. xN

is the pixel value of the Nth frame, and p(wk|xN+1) is used to repre-

sent whether Mk is the first match of the current pixel, which can be

calculated as follows:

p(wk|xN+1) =
{

1, Mk is the first match;
0, otherwise.

(10)

2.3. Discussions

As we can see, the updating methods for variables w, μ and � all

need the division operations. In the hardware implementation, the

division operation is highly time-consuming, much more inefficient

than the addition operation. Moreover, in the division operation, all

variables must be represented using double or float. This further in-

fluences the efficiency of the hardware video codecs. At last, double or

float variables need more bytes to store than char or short, so GMM is

highly memory-consuming. All these limit its wide application in the

hardware implementation of video codecs although it shows promis-

ing performance in both video coding and content analysis tasks. To

solve these problems, we propose a variant of GMM, called fixed-

point GMM (fGMM). It can generate clean background pictures as

GMM does. More importantly, it has no division operation or floating-

point calculation.

2.4. Data conversions in GMM calculations

To avoid using floating-point calculations in the GMM, different

data conversion methods were adopted in previous works. Moon

et al. proposed a fixed-point GMM algorithm in [24]. For simplicity,

their method is abbreviated as fpGMM in this paper. In fpGMM, each

floating-point variable or constant is replaced by a 32-bit integer. It

divides a 32-bit integer to three parts: sign, integer and fraction. The

numbers of bits assigned to the integer field and the fraction field are

called integer word-length (IWL) and fraction word-length (FWL), re-

spectively. For instance, in the case of FWL = 12 and IWL = 19, a float-

point number 1.875 is converted into a fixed-point number 7680 in

decimal system (as shown in Fig. 2). Similarly, some other hardware

implementations of the GMM (e.g., 21–23) use 8 bits to represent the

integer part and 3 bits to represent the fractional part of a double

value. Take the number 0.5625 in decimal system (or 0.1001 in binary

system) as an example. It becomes 0.5 in decimal system (or 0.100 in

binary system) after such a conversion. Obviously, both data conver-

sion methods will bring in heavy approximate error, which further

influences the quality of the background frame greatly. In the exper-

iments, we implement the data conversion method in fpGMM and

compare the surveillance video coding and analysis results of fpGMM

and fGMM. Moreover, we will also discuss the hardware data conver-

sion method in [21] in details and compare the FPGA implementa-

tions of [21] and our fGMM.
. Fixed-point Gaussian Mixture Model

In this section, we first derive some mathematical formulations of

GMM by introducing several integer variables to replace the corre-

ponding float ones in GMM, and then present a division simulation

lgorithm to replace the division operations. In Section 3.2, we fur-

her describe how to conduct the calculations in fGMM using these

nteger variables, including the matching rule and fitness sorting.

inally, a memory cost analysis is presented in Section 3.3.

.1. Mathematical derivations

Fig. 3 describes the sequence structure for video coding and ob-

ect detection [6]. In this structure, several frames labelled as TrainSet

re used to train the background pictures. That is, an initial group of

rames are utilized as TrainSet0 to generate the background picture

or Segment1, whereas the last group of frames in Segmenti are uti-

ized as TrainSeti to generate the background picture for Segmenti+1

here i ≥ 1. Then the generated background picture can be used as

he reference in video coding or for extracting the foreground mask

n object detection on the next segment. In this sequence structure,

4)–(6) are more suitable for GMM parameter updating. Thus, we will

onduct some mathematical derivations to them so as to eliminate

he divisions and floating-point calculations.

.1.1. The updating of weight parameter w

The GMM updating method for w is shown in (4). To remove the

ivision by N + 1 in the right term of (4), we rewrite it by multiplying

+ 1 on both sides, as follows:

N+1
k

(N + 1) = wN
k N + wN

k + p(wk|xN+1) − wN
k . (11)

ere the term wN
k

can be offset. After this, we introduce a new vari-

ble f N
k

to represent the term wN
k

N. It means the product of the win-

ow size N and the weight parameter of Mk. Then (11) can be simpli-

ed as

f N+1
k

= f N
k + p(wk|xN+1). (12)

n this way, the updating of w becomes an iterative calculation of the

ariable f N
k

. As p(wk|xN+1) equals to either 0 or 1, the variable f N
k

in

12) can be represented as an integer.

.1.2. The updating of mean parameter μ
The GMM updating method for μ is shown in (5). To remove the

ivision by
∑N+1

i=1 p(wk|xi) in the right term of (5), we rewrite it by

ultiplying
∑N+1

i=1 p(wk|xi) on both sides, as follows:

N+1
k

N+1∑
i=1

p(wk|xi) = μN
k

N+1∑
i=1

p(wk|xi) + p(wk|xN+1)
(
xN+1 − μN

k

)
.

(13)

s
∑N+1

i=1 p(wk|xi) = ∑N
i=1 p(wk|xi) + p(wk|xN+1), this equation can

e transformed as follows:

N+1
k

N+1∑
i=1

p(wk|xi) = μN
k

N∑
i=1

p(wk|xi) + μN
k p(wk|xN+1)

+ p(wk|xN+1)
(
xN+1 − μN

k

)
. (14)
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Algorithm 1 division using shift operations.

1: procedure division(integer a, integer b)

2: integer result ← 0

3: while a >= b do

4: integer tmp ← 0

5: integer i ← 0

6: while a >= tmp do

7: a ← a − tmp

8: result ← result + (1 << i)
9: tmp ← tmp >> i

10: i + +
11: end while

12: end while

13: return result

14: end procedure

Table 1

The correspondence of the variables in GMM and fGMM.

Variable in GMM Variable in fGMM Equivalence

wN
k

f N
k

f N
k

= wN
k

N

μN
k

νN
k

νN
k

= μN
k

∑N
i=1 p(wk|xi)

�N
k

�N
k

�N
k

= �N
k

∑N
i=1 p(wk|xi)

3

r

a

i

t

t

3

f

a

t

c

S

t

u

(

(

T

f(

A

((

T

c

fter offsetting the same term μN
k

p(wk|xN+1) in the right side of (14),

t can be simplified as follows:

N+1
k

N+1∑
i=1

p(wk|xi) = μN
k

N∑
i=1

p(wk|xi) + p(wk|xN+1)xN+1. (15)

hen a new variable νN
k

is introduced to represent the term
N
k

∑N
i=1 p(wk|xi). It means the product of Mk’s mean value and the

atching sum of Mk in first N frames. Then (15) can be finally sim-

lified as

N+1
k

= νN
k + p(wk|xN+1)xN+1. (16)

.1.3. The updating of variance parameter �

The GMM updating method for � is shown in (6). To remove the

ivision by
∑N+1

i=1 p(wk|xi) in the right term of (6), we rewrite it by

ultiplying
∑N+1

i=1 p(wk|xi) on both sides, as follows:

N+1
k

N+1∑
i=1

p(wk|xi) = �N
k

N+1∑
i=1

p(wk|xi)

+ p(wk|xN+1)
((

xN+1 − μN
k

)(
xN+1 − μN

k

)
− �N

k

)
. (17)

s
∑N+1

i=1 p(wk|xi) = ∑N
i=1 p(wk|xi) + p(wk|xN+1), this equation can

e transformed as follows:

N+1
k

N+1∑
i=1

p(wk|xi) = �N
k

N∑
i=1

p(wk|xi)

+�N
k p(wk|xN+1) + p(wk|xN+1)

×
((

xN+1 − μN
k

)(
xN+1 − μN

k

)
− �N

k

)
. (18)

fter offsetting the same term �N
k

p(wk|xN+1) in the right side of (18),

t can be simplified as follows:

N+1
k

N+1∑
i=1

p(wk|xi) = �N
k

N∑
i=1

p(wk|xi)

+ p(wk|xN+1)(xN+1 − μN
k )

(
xN+1 − μN

k

)
. (19)

hen we introduce a new variable �N
k

to represent the term
N
k

∑N
i=1 p(wk|xi). It means the product of Mk’s variance and the

atching sum of Mk in first N frames. Then (19) can be finally sim-

lified as:

N+1
k

= �N
k + p(wk|xN+1)

(
xN+1 − μN

k

)(
xN+1 − μN

k

)
. (20)

n this equation, μN
k

is needed to update �N
k

. As νN
k

equals to
N
k

∑N
i=1 p(wk|xi), in order to get the value of μN

k
, the division op-

ration is unavoidable. It should be noted that the dividend νN
k

and

he divisor
∑N

i=1 p(wk|xi) are both integers.

To solve the division problem of two integers, [25] utilizes the

ook-up table and approximate calculations to simulate the division

perations. In fact, this is the most efficient method to implement

he division operations when the ranges of the dividend and the divi-

or are limited. However, from the perspective of saving memory, we

ropose an alternative division simulation algorithm using shift op-

rations. As shown in Algorithm 1, all the variables are integers and

he approximate calculation is used. Note that the left and right shift

perations in Algorithm 1 are based on powers of 2. Our experiments

hown in Section 4 will prove that the approximate calculation has

ittle influence on the constructed background pictures.

Table 1 shows the correspondence of the variables in fGMM and

MM. Note that we do not introduce any extra variables, just using

he integer variables to replace the float ones.
.2. Calculations with new variables

In fGMM, the float variables w, μ and � are replaced by the cor-

esponding integer variables f, ν and � . However, without the vari-

bles w, μ and �, some calculations cannot be completed in fGMM,

ncluding the Gaussian distribution matching rule shown in (3) and

he fitness sorting shown in (2). So this subsection will describe how

o accomplish these calculations using the variables f, ν and � .

.2.1. The matching rule

To determine which Gaussian distribution a new pixel matches,

GMM must calculate the distance between the current pixel value

nd the mean value of the Gaussian distribution. As shown in (3), if

he distance is smaller than the product of the stand deviation and a

onstant, the pixel is considered to match this Gaussian distribution.

ince there are float variables μk and σ k in (3), we conduct some

ransformations to (3) so that the calculation can be accomplished

sing variables νk and �N
k

. As �N
k

= (σ N
k
)2, by squaring both sides,

3) can then be transformed as follows:

xN − μN
k )2 ≤ Th

2 × �N
k . (21)

hen multiply (
∑N

i=1 p(wk|xi))
2 at both ends, (21) is turned to the

ollowing expression:

xN

N∑
i=1

p(wk|xi) − μN
k

N∑
i=1

p(wk|xi)

)2

≤ Th
2

×�N
k

N∑
i=1

p(wk|xi)
N∑

i=1

p(wk|xi). (22)

s μN
k

∑N
i=1 p(wk|xi) equals to νN

k
and �N

k

∑N
i=1 p(wk|xi) equals to �N

k
,

22) can be simplified as

xN

N∑
i=1

p(wk|xi) − νN
k

)2

≤ Th
2 × �N

k

N∑
i=1

p(wk|xi). (23)

hus the new matching rule does not need any float variables. All the

alculations can be accomplished using integers.



70 W. Chen et al. / Computer Vision and Image Understanding 142 (2016) 65–79

Table 2

The memory cost of different versions of GMM.

Item GMM fGMM fpGMM

Gaussian number K K K

Pixel number M M M

Memory cost of one Gaussian 26 14 14

Total memory cost 26KM 14KM 14KM
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3.2.2. Fitness sorting

In order to find the first matching Gaussian distribution, GMM

needs to sort the Gaussian distributions according to the fitness value

φN
k

after updating the parameters. This step is also prerequisite of

fGMM. As shown in (2), the fitness value φN
k

is represented by float

or double because of the division operation in GMM. To avoid the

division operations and floating-point calculations, fGMM does not

calculate the fitness value φN
k

directly. Instead, it adopts an indirect

comparing method using diagonal multiplication to compare two

fractions. For instance, if fGMM needs to compare φN
k

of Mk and φN
j

of M j, firstly square φN
k

and φN
j
,

(
φN

k

)2 =
(

wN
k

σ N
k

)2

=
(
wN

k

)2

�N
k

, (24)

(
φN

j

)2 =
(

wN
j

σ N
j

)2

=
(
wN

j

)2

�N
j

. (25)

By multiplying N2 at both ends of (24) and (25), we can get the

following equations:

(
φN

k

)2
N2 =

(
wN

k
N
)2

�N
k

=
(

f N
k

)2

�N
k

, (26)

(
φN

j

)2
N2 =

(
wN

j
N
)2

�N
j

=
(

f N
j

)2

�N
j

. (27)

Note that since N2 is greater than 0, this multiplication would not

change the inequality relationship of φN
k

and φN
j

.

Until now, the inequality relationship of φN
k

and φN
j

still cannot be

determined, because the value of �N
k

and �N
j

cannot be obtained. To

transform them to �N
k

and �N
j
, we further multiply

∑N
i=1 p(wk|xi) in

the numerator and denominator of
( f N

k
)

2

�N
k

in (26), and similarly multi-

ply
∑N

i=1 p(w j|xi) in the numerator and denominator of
( f N

j
)

2

�N
j

in (27).

Thus, (26) and (27) can be transformed as follows:

(
φN

k

)2
N2 =

(
f N
k

)2

�N
k

=
(

f N
k

)2

�N
k

×
∑N

i=1 p(wk|xi)∑N
i=1 p(wk|xi)

, (28)

(
φN

j

)2
N2 =

(
f N

j

)2

�N
j

=
(

f N
j

)2

�N
j

×
∑N

i=1 p(wj|xi)∑N
i=1 p(wj|xi)

. (29)

As �N
k

= �N
k

∑N
i=1 p(wk|xi) and �N

j
= �N

j

∑N
i=1 p(w j|xi), (28) and

(29) can be further simplified as follows:

(
φN

k

)2
N2 =

(
f N
k

)2 ∑N
i=1 p(wk|xi)

�N
k

, (30)

(
φN

j

)2
N2 =

(
f N

j

)2 ∑N
i=1 p(wj|xi)

�N
j

. (31)

As such, the inequality φN
k

< φN
j

equals to(
f N
k

)2 ∑N
i=1 p(wk|xi)

�N
k

<

(
f N

j

)2 ∑N
i=1 p(wj|xi)

�N
j

. (32)

To avoid division operations, we can multiply �N
k
�N

j
in both sides of

(32). Then the inequality φN
k

< φN
j

finally equals to

(
f N
k

)2
N∑

i=1

p(wk|xi)�
N
j <

(
f N

j

)2
N∑

i=1

p(wj|xi)�
N
k . (33)

After the derivations, all the variables are integers now and there is

no division operation needed in (33).
.3. Analysis of memory cost

In general, compared with other background modeling methods

uch as SWRA, GMM is much more memory-consuming. The reasons

re two-folds. First, GMM needs to buffer one frame in memory and

ne pixel needs K Gaussian distributions (often setting to 5) to de-

cribe it. Supposing there are M pixels in one frame and the memory

ost of one Gaussian distribution is S bytes, the total memory cost T

s K × M × S bytes. Second, one Gaussian distribution needs to store

parameters: the weight parameter w, the mean parameter μ, the

ariance parameter � and the matching point counter. In these 4 pa-

ameters, the first three parameters are double and the last one is

hort, so the total memory cost T for GMM is (8 × 3 + 2)KM bytes,

amely 26KM bytes.

In fGMM, we introduce some integer variables to replace the cor-

esponding float ones. This will not lead to the increase of the mem-

ry complexity. The reasons are as follows: In fGMM, the pixel num-

er M of one frame and the Gaussian distribution number K are

he same with GMM. However, the memory cost of one Gaussian

istribution S can be greatly reduced. As the three double param-

ters, namely weight, mean and variance, can be replaced by inte-

er parameters, the total memory cost T for fGMM can decrease to

4 × 3 + 2)KM bytes, namely 14KM bytes. That is, compared with

MM, fGMM can save 46% memory cost. For fpGMM, as it just uses

bits to represent a double value, the total memory cost T also de-

reases to (4 × 3 + 2)KM bytes, namely 14KM bytes. Although achiev-

ng the goal of saving memory, the approximate fractional represen-

ations sacrifice the quality of the reconstructed background, which

s demonstrated in Section 4 in details. The memory costs of different

ersions of GMM are shown in Table 2.

In practice, we can further reduce the memory cost of fGMM by

sing less number of Gaussian distributions. Our experimental re-

ults in Section 4.3 show that by only using two Gaussian distribu-

ions for each pixel, fGMM-2 can also obtain comparable compres-

ion efficiency (with only increase of 0.3∼0.4% bit-rate) with GMM-5

i.e., the GMM with five Gaussian distributions for each pixel), but can

ave 78.5% memory cost.

. Experiments

In order to verify the effectiveness of the proposed fGMM, three

ets of experiments were conducted: the comparison of different ver-

ions of GMM in background qualify, the surveillance video coding

xperiments on the IEEE 1857-S platform (AVS) [2] when using differ-

nt background modeling methods, and the object detection experi-

ents to validate whether fGMM can be used to improve the perfor-

ance of video analysis tasks. Note that IEEE 1857-S is the first video

oding standard with the profile for surveillance videos (the jiankong

rofile in AVS) [2]. To make the experimental results applicable to

ifferent video codecs, experiments on the HEVC/H.265 were also

onducted.

.1. Dataset

The experimental sequences are all from the PKU-SVD-A dataset.

his dataset consists of more than 10 uncompressed videos with

ifferent resolutions (ranging from SD, 720p, 1600 × 1200, and
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Fig. 4. Sequences used in our experiments. Bank, Classover, Crossroad and Overbridge are SD sequences whose resolution is 720 × 576 while RedHouseNo.4_north,

WeiMingLake_east, RedHouseNo.4_west and RedHouseNo.1_east are HD sequences whose resolution is 1920 × 1080.

Fig. 5. Some examples of background pictures generated by fGMM and GMM.
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920 × 1080). We adopt this dataset because it is the only public

ataset for surveillance video coding till to now, and some sequences

rom this dataset are also used as IEEE 1857-S surveillance test

equences.

Eight sequences from the PKU-SVD-A dataset were used in

ur experiments (shown in Fig. 4). In these sequences, four of

hem are 720 × 576 (SD) sequences and the other four are 1920

1080 (HD) sequences. In the SD sequences, the sequences Bank,

rossroad and Overbridge were captured from a very busy cross-

oad, and contain different kinds of objects such as cars, buses,

uildings, pedestrians and so on. The other SD sequence Classover

as captured from a campus and can be used to evaluate the

ethods in the uncomplicated scene. The four HD sequences

edHouseNo.4_north, WeiMingLake_east, RedHouseNo.4_west

nd RedHouseNo.1_east (abbreviated as No.4_north, Lake_east,

o.4_west and No.1_east in this paper) can be used to evaluate the

erformance of the methods on high resolution videos. Especially,

he sequence No.1_east captured in dusk was adopted to evaluate the
ackground modeling methods in extreme illumination conditions.

t should be noted that all the eight sequences were used in the

ideo coding experiments, while the three HD sequences No.4_north,

ake_east and No.4_west were used in the object detection experi-

ents, since they are more viable to label the ground-truths (i.e., the

ectangles containing objects).

.2. The background samples of different GMMs

To compare the samples of different GMMs subjectively, we used

hree methods, namely GMM, fGMM and fpGMM [24], to build the

ackground pictures through training on several frames. The experi-

ental settings are the same as above. Note that for all GMM-related

ethods in the experiments, we used the same settings of these

arameters.

Some examples of the background pictures generated by GMM

nd fGMM are shown in Fig. 5. We can see that, the background pic-

ures generated by fGMM and GMM are visually almost the same,
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Fig. 6. Some examples of background pictures generated by fGMM and fpGMM.
very hard to be distinguished by human eyes. This experimental re-

sult confirms that the approximate calculation in fGMM has little in-

fluence on the generated background pictures.

In addition, Fig. 6 visualizes some examples of background pic-

tures generated by fGMM and fpGMM. In fpGMM’s results, there

are several foreground pollution cases in the background pictures

(marked by circles) caused by approximate calculations. Since there

are many approximate calculations in fpGMM, the overall precision is

rather low, exerting negative influence on the quality of background

pictures.

4.3. The performance in video coding

Recently, some works [5,6,12,26] have showed that background

modeling can significantly improve the performance of surveillance

video coding, because the background picture can provide better ref-

erence for the following encoding frames. So the best way to assess

whether a background modeling method is suitable for surveillance

video coding is to evaluate the compressing ratio. Thus this set of ex-

periments were to evaluate the performance of different background

modeling methods [27,28] when used in video coding. Five back-

ground modeling methods and AVS baseline profile encoder were in-

cluded in our experiment:

(1) Running Average (RA): a simple pixel-based background mod-

eling method. The background update is as follows:

BN+1 = αxN + (1 − α)BN, (34)
where BN is the background value when the window size

equals to N, xN is the pixel value and α is the updating ratio.

(2) Segment-and-Weight based Running Average (SWRA): SWRA

firstly divides pixels at each position in the training frames

into several temporal segments, and then calculates their cor-

responding means and weights. After that, a running and

weighted average procedure is used to reduce the influence

of foreground pixels. This method is one of the recommended

background modeling methods in the AVS reference software.

(3) GMM: The float version of GMM in [14] is used to generate the

background pic tures.

(4) Motion Vector Average (MVA): In [29], Vacavant et al. proposed

a block-size based background modeling method. Similar to

[29], the testing method in this experiment uses the motion

vector (MV) in video coding to build the background pictures.

MV denotes the direction and distance of the movement of one

block. If the size of MV is greater than four, this block is con-

sidered to be a foreground block and its pixel value cannot be

used to update the background. Otherwise, it uses the current

pixel value to update the background.

(5) Fixed-point GMM in [24] (fpGMM): fpGMM uses the float-

point conversion to complete the calculations in GMM.

(6) AVS baseline profile encoder (BP): The standard AVS encoder

without background modeling.

In our experiment, except the AVS baseline profile encoder, the

number of training frames of all the other encoders is 200 and the
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Table 3

Configurations of the used SM2_1.6 jiankong profile.

Parameter Value Parameter Value

EntropyCoding UVLC FrameRate 25

SearchRange 32 RDO Used

RateControl Disable FME UMH

RefNumber 32 IntraPeriod 0

b

f

r

e

[

t

r

T

p

t

r

o

i

q

w

4

t

w

a

f

f

a

a

s

g

w

a

a

a

Q

S

s

H

t

c

e

b

t

s

G

H

a

4

f

d

b

g

i

e

c

t

r

t

o

b

b

p

o

t

s

[

R

c

m

s

c

e

a

r

t

f

t

i

t

a

e

j

d

p

u

c

ackground update cycle is 600. The number of all the encoded

rames is 1500. For fair comparison, all the anchors and our algo-

ithm were implemented on the SM2_1.6 (very believable AVS ref-

rence software) jiankong profile with the common test conditions

2]. The configurations in our experiment are shown in Table 3 and

he eight video sequences are encoded with QP = 27, 32, 38 and 45.

The compressing ratios of different methods are measured by bd-

ate [30]. The bd-rate results for the eight sequences are shown in

able 4, while the rate-distortion curves are shown in Fig. 7. Com-

ared with the AVS baseline profile encoder (BP), due to the posi-

ive influences of the background references, fGMM saves 59.5% bit-

ate for the SD sequences and 47.3% bit-rate for the HD sequences

n average. These results again validate that background modeling

s considerably helpful in surveillance video coding. For the SD se-

uences, fGMM saves 9.1, 5.8 and 3.7% bit-rate, respectively compared

ith MVA, RA and SWRA. For the HD sequences, fGMM also saves 9.5,

.5 and 3.1% bit-rate. These results show that fGMM is more effective

han MVA, RA and SWRA when used in video coding. By comparing

ith fpGMM in [24], fGMM saves 10.0% bit-rate for the SD sequences

nd 11.7% bit-rate for the HD sequences. At last, compared with GMM,

GMM increases 0.03% bit-rate for the SD sequences and 0.1% bit-rate

or the HD sequences. This performance loss is mainly caused by the

pproximate calculation in fGMM. In practice, it is almost ignorable.

To evaluate the performance of fGMM on different encoders, an

dditional experiment based on HM12.0 (the HEVC/H.265 reference

oftware) was conducted. In [31], a method which utilizes the back-

round pictures for surveillance video coding and prediction in HEVC

as proposed. We implemented this approach in our experiments

nd used GMM and fGMM to generate the background pictures so

s to compare their performance. The configurations for HEVC/H.265

re shown in Table 5 and the eight video sequences are encoded with

P at 22, 27, 32 and 37. The experimental results are shown in Table 6.

ince the HEVC encoder supports the variable block structure, the re-

ults are a little bit different with those on AVS. But no matter on

EVC or AVS, the performance loss is both considerably small and

hus can be acceptable under the conditions of using approximate

alculations in fGMM.

In the experiments above, the number of Gaussian distributions

quals to 5. We conducted an additional experiment using fGMM-2 to

uild the background pictures for video coding. In this experiment, all
Table 4

Compressing ratio saving of fGMM compared with different background m

Sequence (SD) Bank (%) Cross-road (%)

fGMM vs. SWRA −4.2 −2.3

fGMM vs. GMM 0.1 0.0

fGMM vs. RA −7.8 −5.2

fGMM vs. MVA −11.4 −6.4

fGMM vs. BP −63.4 −34.4

fGMM vs. fpGMM −6.1 −8.7

Sequence (HD) No.4-west (%) No.4-north (%)

fGMM vs. SWRA −2.5 −3.1

fGMM vs. GMM 0.2 0.1

fGMM vs. RA −6.1 −5.5

fGMM vs. MVA −13.6 −7.3

fGMM vs. BP −51.1 −41.8

fGMM vs. fpGMM −9.6 −13.4
he parameters are the same with above except the number of Gaus-

ian distributions. The results are shown in Table 7. Compared with

MM-5, fGMM-2 increases 0.3% bit-rate on SD and 0.4% bit-rate on

D on average. Taking the memory saving brought by fGMM-2 into

ccount, the bit-rate increase is rather acceptable.

.4. The performance in object detection

The purpose of this set of experiments was to evaluate the per-

ormance of fGMM when used in video analysis tasks (e.g., object

etection). In the experiment, the quantitative evaluation was done

y comparing the similarity between the subtraction results and the

round-truths. Often, the ground-truths should be manually labelled

n the form of accurate contours of all foreground objects. How-

ver, labeling such ground-truths on a large data set is very labor-

onsuming. A simplified method is proposed in [32] and this evalua-

ion method has been used in many papers (e.g. [19]), where some

andom frames are extracted from the test data, and the ground-

ruths of these frames are generated by labeling the bounding boxes

f foreground objects. When at least 40% pixels in an object bounding

ox (note that 25% was used in [32]) are determined as foregrounds

y an algorithm, that object is viewed as a correct detection. The true

ositive TP is defined as the ratio of the number of correctly detecting

bjects vs. the number of labelled objects in the ground-truths, and

he negative positive FP is measured as the percentage of objects out-

ide the bounding box that are incorrectly classified as foreground

32]. For different background modeling methods, we can plot the

OC curves for each method under different thresholds, and then cal-

ulate the Area Under the ROC Curve (AUC). AUC measures the perfor-

ance from different thresholds and then calculates a single overall

core. The geometric meaning of AUC is the area between the ROC

urve and the x-axis.

To conduct these experiments, we implemented a Smart Cam-

ra system proposed in [2]. The framework and backend interface

re shown in Figs. 8 and 9, respectively. This Smart Camera is a

eal-time surveillance video processing system that can implement

he background-model-based surveillance video coding and moving

oreground detection inside the camera. Its input sequence is cap-

ured from a camera and the output contains four windows shown

n Fig. 9. The top-left is the decoded frames, while the top-right is

he background frames which can be used in video coding and video

nalysis at the same time. The bottom-left is foreground masks gen-

rated by background subtraction and the bottom-right is the ob-

ect detection results that are obtained just using the foreground

etection.

In this experiment, the performance of object detection in both

rocessing speed and accuracy can be improved remarkably by

tilizing the background pictures generated in the coding pro-

ess. To evaluate the object detection performance, the well-known
odeling methods on AVS.

Class-over (%) Over-bridge (%) Average (%)

−6.5 −1.8 −3.7

0.0 0.0 0.03

−2.6 −7.4 −5.8

−7.8 −10.7 −9.1

−76.9 −63.2 −59.5

−11.7 −13.6 −10.0

Lake-east (%) No.1-east (%) Average (%)

−2.4 −4.5 −3.1

0.1 0.0 0.1

−4.9 −1.5 −4.5

−3.0 −14.2 −9.5

−19.8 −76.6 −47.3

−8.4 −15.5 −11.7
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Fig. 7. Rate-distortion curves for the eight sequences on AVS. The top row lists the SD sequences: Bank, Crossroad, Classover and Overbridge. The bottom row lists the HD sequences:

RedHouseNo.4_west, RedHouseNo.4_north, WeiMingLake_east and RedHouseNo.1_east.

Table 5

Configurations of the used HM 12.0 main profile.

Parameter Value Parameter Value

EntropyCoding CABAC FrameRate 25

SearchRanged 64 RDO Used

RateControl Disable Profile Main

MaxCUheight 64 MaxCUwidth 64

RefNumber 4 IntraPeriod −1
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discriminatively trained part-based models (DPM) [33] is used in the

video analysis module to get the final object detection results. It is

based on mixtures of multi-scale deformable part models to repre-

sent highly variable object classes, thus achieving better performance

than other state-of-the-art methods.
Six methods were used in this experiment to evaluate their perfor-

ances in terms of the object detection task. The first method does

ot have the background modeling and the background subtraction

odule in Fig. 8, but just completes the detection processes on the

hole decoded video frames (directly denoted as DPMFrame here). The

nother three methods are to utilize the DPM with three different

ackground modeling methods: fGMM, GMM and SWRA (denoted as

PMfGMM, DPMGMM and DPMSWRA, respectively). The last two are to

tilize the DPM with ViBe (denoted as DPMViBe) and PBAS (denoted as

PMPBAS). Note that we directly used the segmentation results of ViBe

nd PBAS as the input of DPM, because it can only obtain the fore-

rounds. In all GMM-related methods, they exactly follow the frame-

ork in Fig. 8: in the encoding side, the input videos are encoded with

ackground modeling, and the background pictures are also encoded
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Table 6

Compressing ratio saving of fGMM compared with GMM on HEVC.

Sequence(SD) Bank (%) Cross-road (%) Class-over (%) Over-bridge (%) Average (%)

fGMM vs.GMM 0.1 0.0 0.0 0.0 0.03

Sequence(HD) No.4-west (%) No.4-north (%) Lake-east (%) No.1-east (%) Average (%)

fGMM vs. GMM 0.1 0.2 0.1 0.0 0.1

Table 7

Compressing ratio saving of fGMM-2 compared with GMM-5.

Sequence(SD) Bank (%) Cross-road (%) Class-over (%) Over-bridge (%) Average (%)

fGMM-2vsGMM-5 0.5 0.1 0.1 0.5 0.3

Sequence(HD) No.4-west (%) No.4-north (%) Lake-east (%) No.1-east (%) Average (%)

fGMM-2vsGMM-5 0.2 0.4 0.8 0.2 0.4

Fig. 8. The framework of object detection by utilizing the background pictures gener-

ated in the coding process.
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nto the bit-stream; while in the decoding side, the bit-streams are

ecoded to get the video frames and meanwhile the decoded back-

round pictures can be utilized to extract the foreground regions; fi-

ally, object detection with DPM is conducted on those foreground

egions. Noted that in the whole procedure of the three GMM-related
Fig. 9. The backend interface of o
ethods, all the steps are identical except that different background

odeling methods are used.

The ROC curves of different methods are shown in Fig. 10. We

an see that DPMfGMM, DPMGMM and DPMSWRA all outperform the

PMFrame. The reason lies that the foreground regions obtained by

ackground subtraction have excluded some areas where the fore-

round objects will not appear. For example, in the left frame in

ig. 11, the yellow rectangles are foreground regions generated by

GMM-based background subtraction and the green rectangles are

he final detection results; while in the right frame in Fig. 11, the red

ectangles are the detection results when DPMFrame is performed di-

ectly on the whole decoded frame. There is a false detection rectan-

le on the upper right corner in the right frame, where the leaves are

egarded as a pedestrian. However, in the left side, since the fGMM-

ased detection is just performed inside the yellow box, this false de-

ection can be avoided. We also notice that DPMfGMM and DPMGMM

ave nearly the same performance in most cases, both better than

PMSWRA. Basically, the DPM method is very sensitive to foreground

egions. That is, one or two pixels deviation of the foreground region

ay result in a great difference of the final result. This is the rea-

on why the DPMfGMM curve and the DPMGMM curve are separate in
ur Smart Camera system.
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Fig. 10. ROC curves of different methods on PKU-SVD-A dataset. (a) RedHouseNo.4_west, (b) RedHouseNo.4_north, and (c) WeiMingLake_east.

Fig. 11. An example of object detection. The left frame shows the detection results of DPMfGMM , where the yellow rectangles denote the foreground region generated by background

subtraction and the green rectangles denote the detection results. The right frame depicts the detection results when the DPMFrame is directly performed on the whole decoded

frame, where the red rectangles denote the detection results. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
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some parts. The AUCs of different background modeling methods are

shown in Table 8. They are consistent with the ROC curves.

From Table 8, we can see that ViBe and PBAS are slightly better

than the GMM-related methods in most cases. However, they cannot

be used in video coding. Therefore, fGMM is still one of the best back-

ground modeling methods for the hardware implementation of the

analysis-friendly video codec.

Also, the detection time results of the six DPM methods on a
4-core PC with 3.3GHz CPU and 4G RAM are recorded in Table 9. g
ince the DPMFrame has to scan the whole frame, its speed is rather

low, more than 40 seconds per frame for 1920 × 1080 sequences on

verage. While the DPMs with background modeling methods (i.e.,

PMfGMM, DPMGMM and DPMSWRA) are much faster. The main reason

s that the detection is only performed on foreground regions, thus

aving a lot of time. Note that the DPMSWRA is slower than DPMfGMM

nd DPMGMM. This is because the foreground pollution in the back-

round pictures generated by SWRA results in larger foreground re-

ions, thus increasing the detection time of DPMSWRA.
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Table 8

AUCs of the DPMs with different background modeling methods.

Sequence No.4_west No.4_north Lake_east

DPMfGMM 0.503 0.745 0.754

DPMGMM 0.508 0.746 0.765

DPMSWRA 0.482 0.724 0.703

DPMFrame 0.439 0.695 0.580

DPMViBe 0.487 0.761 0.772

DPMPBAS 0.479 0.753 0.746

Table 9

Detection time of the DPMs with different background modeling methods.

Sequence No.4_west No.4_north Lake_east

DPMfGMM 8.14s 11.87s 9.27s

DPMGMM 8.37s 11.93s 9.21s

DPMSWRA 17.05s 23.32s 10.91s

DPMFrame 44.17s 40.73s 46.77s

DPMViBe 7.82s 10.46s 9.01s

DPMPBAS 8.12s 10.92s 11.14s

Fig. 12. The mean representation error, depending on the number of bits for the frac-

tional part for different values of the parameter α.

5

u

w

c

S

m

a

p

i

s

p

l

a

μ

�

F

f

t

fl

F

l

b

r

r

b

o

h

p

F

t

m

t

c

a

b

c

o

f

a

d

i

a

d

c

t

h

. The FPGA implementation of fGMM

As discussed in Section 2.4, most existing works (e.g., [21–23])

se data conversions to make the GMM more suitable for the hard-

are implementation. Different from them, the fGMM needs no data

onversions because of the mathematical derivations presented in

ection 3. Thus no approximate representation will be adopted in our

ethod.
 a

Fig. 13. The framework of the FPGA implementation of our f
In [21], a simple experiment was conducted on the running

verage method to evaluate the influence of different fixed-point

recisions on the background model. In this paper, a similar exper-

ment is performed on the GMM. For simplicity, the number of Gaus-

ians is set to 1. The matching rule and update strategy for Gaussian

arameters (presented in details in Sections 2.1 and 2.2) are as fol-

ows:

bs(x − μk) ≤ Th × σk, (35)

N+1
k

= μN
k + p(wk|xN+1)∑N+1

i=1 p(wk|xi)
(xN+1 − μN

k ), (36)

N+1
k

= �N
k + p(wk|xN+1)∑N+1

i=1 p(wk|xi)
((xN+1 − μN

k )(xN+1 − μN
k ) − �N

k ).

(37)

or several pre-selected values of Th (2, 2.5, 3) and 0∼5 bits for the

ractional part, (36) was calculated for all possible input values. Then

he mean error between the examined representation and double

oating point precision was calculated. The result is presented in

ig. 12. We can see, the more bits it used for the fractional part, the

ess the error is. But using more bits means higher memory costs. To

alance the memory costs and errors brought by approximate rep-

esentations, most of existing methods (e.g., [21–23]) use 3 bits to

epresent the fractional part. This will influence the quality of the

ackground frame greatly. For fGMM, we can directly implement it

n hardware devices with few approximate calculations and lower

ardware requirements by comparison with [21]. The framework and

hysical map of the FPGA implementation of our fGMM are shown in

igs. 13 and 14, respectively.

In [21], the one-model size (namely, the number of bits required

o model a pixel using one Gaussian) is 47 bits. In the FPGA imple-

entation of fGMM, it is 48 bits (16 bits for the mean value, 8 bits for

he weight and 24 bits for the variance). In fact, we can further de-

rease the one-model size to 40 bits by just using 16 bits for the vari-

nce. But this means that some approximate representation should

e adopted like [21]. Therefore, to guarantee the quality of the re-

onstructed background frame, the one-model size is set to 48 bits in

ur FPGA implementation. In [21], the processing speed can reach 60

ps for HD videos (1920 × 1080) when the hardware configurations

re as follows: the user logic works with 200 MHz clock, the 64-bit

ata bus to DDR3 memory whose data rate is 800 MHz. In the FPGA

mplementation of our fGMM, we just requires 140 MHz user logic

nd 622 MHz DDR3 memory. The calculations are as follows: In our

esign, we combine two pixels as a group. With this strategy, only 9

ycles are required to update the GMM parameters for two pixels, so

he required user logic is 1920 × 1080 × 60 × (9/2) = 560 MHz. As we

ave 4 processing units (PUs) in the background update module, the

ctual required user logic is 560/4 = 140 MHz. For the DDR3 memory,
GMM, where FIFO denotes the first-in-first-out buffer.
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Fig. 14. The physical map of the FPGA implementation of fGMM.

Table 10

Required hardware configurations for real-time processing for fGMM and [21].

Method One-model size Data bus User logic DDR clock

[21] 47bits 64-bit 200 MHz 800 MHz

fGMM 48bits 64-bit 140 MHz 622 MHz

i

s

t

s

v

v

m

f

c
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s

g

c

a

P

R

the total bandwidth is 1920 × 1080 × 60 × (2 × 2 × 6) = 2.986 GBps

= 23.888 bits, where the first “2” in brackets means accessing the

memory two times, for writing and reading memory, the second “2”

in brackets represents the number of Gaussian distributions, while

the number “6” in brackets means the cycles we need to process a

pixel using pipeline. Assuming the bandwidth utilization is 60%, the

required frequency for DDR3 memory is 23.888/64/0.6 = 0.622GHz

= 622 MHz. Therefore, we can use a 622 MHz DDR3 memory to re-

alize real-time processing. The requirements of hardware devices for

fGMM and [21] are shown in Table 10.

More importantly, the background frames generated by [21] are

obviously worse than those by fGMM. From Fig. 4 in [21], we can see

that its background frame contains some visible foreground pollu-

tions brought by converting float into integers. However, as shown

in Fig. 5, few foreground pollutions can be found in the background

frames generated by our fGMM.

6. Conclusion

This paper proposes a fixed-point Gaussian Mixture Model

(fGMM) which eliminates the floating-point calculations and divi-

sion operations so that it can be used in the hardware implemen-

tation of the analysis-friendly surveillance video codec. Compared

with other data conversion methods, fGMM has three remarkable

advantages. First, fGMM does not introduce any approximate repre-

sentation to convert float into integer, and also avoids division op-

erations by a division simulation algorithm and an approximate cal-

culation. Extensive experiments on various video coding and content

analysis tasks show that fGMM can complete all the calculations us-
ng integers to achieve comparable performance with the float ver-

ion of GMM. Second, fGMM greatly cuts the memory cost due to

he removal of floating-point calculations. Experimental results also

how that fGMM can saves 46% memory cost compared with its float

ersion. At last, fGMM can be easily implemented in hardware de-

ices. Compared with the state-of-the-art method [21], fGMM has

uch lower requirements for real-time HD video processing. In the

uture, we will implement it in SOC so as to effectively empower the

ameras with such a hardware codec.
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