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Abstract—Since the purpose of objective image quality assess-
ment is to be consistent with subjective image quality assessment
as highly as possible, the understanding of the mechanisms of
human visual system will certainly benefit the study of objective
image quality assessment. Recent developments in brain theory
and neuroscience, particularly the free-energy principle, account
for the perception and understanding of visual scenes. As the
free-energy principle conjectures, the brain tries to generate the
corresponding prediction for its encountered scene by an internal
generative model. On the other hand, sparse representation is
evidenced to resemble the neural response properties of simple
cells in the primary visual cortex. Conjunctively, in this paper,
we suppose the prediction manner of the internal generative
model in free-energy principle follows sparse representation and
propose an image quality metric accordingly. Experiments on
LIVE, TID2008 and CSIQ image databases demonstrate the
effectiveness of the proposed image quality metric. Noteworthily,
our metric needs little information (only a single scalar) of the
reference image and is training-free.

I. INTRODUCTION

Nowadays, a large number of digital images enter peo-
ple’s life and become the important way of transferring and
exchanging information. Nevertheless, the quality of these im-
ages is hard to guarantee. That is, the images often suffer from
different kinds of distortions, such as noise, blurring, blocki-
ness etc., which all degrade the image quality. Therefore, it is
necessary to acquire the image quality for image applications.
To this end, image quality assessment (IQA) is concerned
and deeply studied in recent years. Generally, existing IQA
methods fall into two categories, subjective assessment and
objective assessment. Subjective assessment refers to evalu-
ating the image quality from the subjective judgements of
humans. This is the most reliable way of assessing the image
quality since human beings are usually the ultimate receivers in
image processing applications. However, subjective assessment
is always expensive, cumbersome and hard to be embedded
into real-time systems. Therefore, researchers endeavor to
explore objective IQA methods. According to the availability
of reference image, the objective assessment methods can be
classified into full reference (FR), reduced-reference (RR) and
no-reference (NR). For FR methods, the pristine or distortion-
free image is referred when assessing the image quality, while
this condition is rather ideal in practice. For RR methods,
only partial information of the pristine image is needed, while
NR methods can evaluate the image quality without any
information of pristine images, which is closest to reality as
there’re actually no corresponding reference when we view
images.

Past years have seen a lot of outstanding objective IQA
methods which greatly promote the study of IQA. For FR
methods, the mean-squared error (MSE) and its relevant peak
signal-to-noise ratio (PSNR) were most popular owing to their
low computational cost, high portability and clear physical
meaning. While they were also found poorly consistent with
subjective evaluation for the image quality. Hence, Wang et
al. proposed the structural similarity index (SSIM) [1], which
is based on the hypothesis that the human visual system
(HVS) is highly adapted to extract the structural information
from the visual scene. Therefore, measuring the structural
similarity between the reference image and distorted image can
provide a good estimation of the image quality. Later, some
other superior FR IQA models [2] [3] were presented from
different perspectives. For RR IQA, partial information of pris-
tine/reference image is used in quality assessment. In [4], the
entropies of wavelet coefficients of the reference image were
compared with that of the distorted image to measure image
quality. While in most cases of real applications, the reference
image is often absent or unavailable. On this occasion, NR
IQA is the only way to obtain the image quality. Usually, NR
methods follow two stages, feature extraction and mapping
process which maps the feature vectors onto the image quality
level [5].

While the purpose of objective IQA is to mimic subjective
IQA, consequently, the mechanisms of HVS should be intro-
duced in designing the objective IQA algorithms. From this
point, Zhai et al. in [6] proposed a new psychovisual image
quality metric (FEDM) based on the free-energy principle in
brain theory and neuroscience. In free-energy principle, the
perception and understanding of an image is modeled as an
active inference process, in which the brain tries to explain the
image using an internal generative model. With this model,
the brain generates predictions of those encountered scenes.
However, there exists a discrepancy between the scene and
its prediction and this discrepancy should be related to the
quality of perceptions. For computational simplicity, the linear
AR model was chosen to simulate the internal generative
model in [6], while this lacks necessary considering of visual
processing mechanism of the HVS. Therefore, a model that
resemble perception behavior is needed to better simulate the
internal generative model. As stated in [7], the receptive fields
(RFs) of simple cells in mammalian primary visual cortex
can be characterized as being spatially localized, oriented
and bandpass. One approach to understanding such response
properties of visual neurons is to investigate the relationship
between the properties and the statistical structure of natural
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images in terms of efficient coding. Then the authors of [7]
accounted that sparse representation for natural scenes earned
similar results to those found in the primary visual cortex.
Inspired by this, in this paper, we suppose the prediction
manner of visual scenes by the internal generative model
follows sparse representation which states that a signal can
be represented by a linear combination of a small number
of atoms in a dictionary. Similarly, the discrepancy between
the visual scene and its sparse representation indicates the
perceptual quality of the visual scene. Based on these analysis,
we propose a perceptual image quality metric by combining
the free-energy principle and sparse representation. The pro-
posed quality metric belongs to RR IQA methods actually
because partial information of the reference image is needed
for quality estimation. However, the needed information of
our method can be modeled as a single scalar (entropy of
the prediction residuals) extracted from the reference image,
which is negligible compared to the size of image data. Under
this considering, our metric can be approximately regarded
as an NR method. Noteworthily, our method is training-free
which has better universality than the training-based methods.
Experiments on LIVE, TID2008 and CSIQ image databases
confirm the effectiveness of our image quality metric.

The remainder of this paper is organized as follows: Section
II introduces the concept of the free-energy principle. Section
III details the proposed perceptual image quality metric. Ex-
perimental results and analysis are presented in Section IV.
Finally, we conclude this paper in Section V.

II. THE FREE-ENERGY PRINCIPLE

Our method is under the guidance of the free-energy prin-
ciple. Therefore, we will specify the free-energy principle at
first. As we mentioned before, the fundamental assumption in
free-energy principle is that the cognitive process is governed
by an internal generative model in the brain. With the model,
the brain is able to actively infer predictions of meaningful
information from visual scenes and reduce residual uncertainty
at the meantime.

For operational amenability, it is assumed that the internal
generative model G for visual perception is parametric, which
explains visual scenes by adjusting the parameter vector g.
Specifically, given an image, its ’surprise’ can be calculated
by integrating the joint distribution P (I,g) over the space of
the internal model parameters g as:

− logP (I) = − log

∫
P (I,g)dg. (1)

Then a dummy term Q(g|I) is integrated into both the
denominator and numerator of the right part of equation (1)
as follows:

− logP (I) = − log

∫
Q(g|I)P (I,g)

Q(g|I)
dg. (2)

Here, Q(g|I) is an auxiliary posterior distribution of the model
parameters given the image, It can be thought of as an approx-
imate posterior to the true posterior of the model parameters
P (g|I) calculated by the brain. The brain minimizes the
discrepancy between the approximate posterior Q(g|I) and the

true posterior P (g|I). Through Jensen’s inequality, equation
(2) changes to:

− logP (I) ≤ −
∫
Q(g|I) log P (I,g)

Q(g|I)
dg. (3)

Afterwards, the right side of equation (3) is defined as the free
energy as follows:

F (g) = −
∫
Q(g|I) log P (I,g)

Q(g|I)
dg. (4)

Obviously, the free energy defines an upper bound of ’surprise’
for the given image I . Rearranging (4), we obtain:

F (g) =

∫
Q(g|I) log Q(g|I)

P (I,g)
dg

=

∫
Q(g|I) logQ(g|I)dg −

∫
Q(g|I) logP (I,g)dg

(5)
= EQ[− logP (I,g)]− EQ[− logQ(g|I)],

which expresses the free energy as energy minus entropy,
the first term represents taking the expectation of Gibbs free
energy of the system that contains the image I and the
model parameters g, and the second term is the entropy of
the approximate posterior density. For intuitive understanding,
with P (I,g) = P (g|I)P (I), equation (5) can be transferred
to:

F (g) =

∫
Q(g|I) log Q(g|I)

P (g|I)P (I)
dg

= − logP (I) +

∫
Q(g|I) log Q(g|I)

P (g|I)
dg (6)

= − logP (I) +KL(Q(g|I)‖P (g|I)),

where KL(·) refers to the Kullback-Leibler divergence be-
tween the approximate posterior and the true posterior distribu-
tions and it’s nonnegative. It is clearly seen that the free energy
F (g) is greater than or equal to the image ’surprise’ -logP (I).
The brain tries to lower the divergence KL(Q(g|I)‖P (g|I))
between the approximate posterior and its true posterior distri-
butions when perceiving the image I . More details about the
free-energy principle can be found in [6].

III. PERCEPTUAL IMAGE QUALITY METRIC

In the work of [6], the linear AR model was adopted to
simulate the internal model which generates predictions of the
images due to its computational simplicity. Consequentially,
the visual processing mechanism of HVS is underestimated
with AR prediction. Therefore, in this paper, we resort to other
prediction method that is similar to the perception behavior of
the visual system. As mentioned before, sparse representation
for visual scenes resembles the neural response properties of
simple cells in the primary visual cortex, this inspires us to
suppose that the prediction manner of the internal generative
model in free-energy principle follows sparse representation.

A. Sparse Representation

Sparse representation refers to representing a signal with
a linear combination of a small number of atoms from a
predefined or trained dictionary [8]. Specifically, given a
signal y ∈ Rn with an overcomplete dictionary matrix
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D ∈ Rn×K that contains K columns, each column represents
one prototype atom. Then the dictionary D can be denoted
as [d1,d2,d3...dK ]. The signal y is represented as a sparse
linear combination of the atoms in D as:

y = Dx, (7)

or approximately represented as:

y ≈ Dx s.t. ‖y −Dx‖p ≤ ξ, (8)

where x ∈ RK represents the vector that contains the repre-
sentation coefficients. ‖·‖p is the lp norm. What we concerned
is finding fewest number of nonzero coefficients to represent
the signal y, namely requesting for the sparsest representation:

x∗ = argmin
x
‖x‖0 s.t. y = Dx, (9)

where ‖ · ‖0 is the l0 norm, meaning the number of nonzero
elements of a vector. However, l0-minimization is an NP-
hard problem, one approach is applying “pursuit algorithm”
to find an approximate solution. Another alternative solution
is to replace l0 norm with l1 norm and minimize the l1 norm
as:

x∗ = argmin
x
‖x‖1 s.t. y = Dx, (10)

This equation can be further turned into an unconstrained
optimization problem:

x∗ = argmin
x

1

2
‖y −Dx‖2 + λ‖x‖1, (11)

where λ is a positive constant balancing the importance of the
reconstruction fidelity term and the sparse constraint term. This
unconstrained optimization problem can be solved by iterative
shrinkage/thresholding algorithm [9]. With the obtained coef-
ficient vector x and the predefined dictionary D, we can get
the sparse representation of signal y accordingly.

B. The Perceptual Image Quality Index

The free-energy principle points out that the brain tends
to generate predictions of external images through an internal
generative model. While the prediction/representation of the
input image can’t reach the image itself. In other words, there
indeed exists a discrepancy between the image and its model-
predicted version and this discrepancy is believed to be closely
related to the perceptual quality of the image. As defined
in equation (4), free energy presents a discrepancy measure
between the image data and its prediction. Therefore, we can
measure the quality of the distorted image by checking the
variance of its free energy. In other words, here free energy
can be viewed as a quality-connected feature extracted from
the reference image and distorted image respectively and we
can acquire the quality of the distorted image through feature
comparison. Based on these analysis, we denote the absolute
difference between the reference image r and its distorted
version d in free energy as the image quality index Q:

Q = |F (gd)− F (gr)|. (12)

For intuitive observation, we show the computational process
of the proposed image quality metric in Fig. 1. As can be seen,
the reference image and the distorted image are firstly sparsely
represented to get the predicted reference and distorted images

Fig. 1. The computational process of the proposed image quality metric.

respectively. This step is to simulate the prediction process
of the internal generative model in the brain. The sparse
representation follows the procedures described in III-A and
the detailed configurations of sparse representation are given
in section IV. After obtaining the predicted images, the free
energies of the reference image and the distorted image are
computed separately. The entropy of the residuals between
the image and its predicted version is employed for the
computation of free energy, as it can measure the uncertainty
of the discrepancy between image and its predicted version in
a simple way. At last, we take the absolute difference of the
two free energies as the final image quality metric Q.

It should be noted that the lower Q is, the closer the
perceptual quality is between the distorted image and its
reference/distortion-free image, which means the perceptual
quality of the distorted image is higher. Otherwise, if Q is
higher, the perceptual quality of the reference image and its
corresponding distorted image diverges more, which indicates
the distorted image has poorer image quality. Summarily
speaking, the lower Q is, the higher the quality of the distorted
image is. Undoubtedly, the proposed quality index belongs to
RR IQA method as partial information (the free energy) of
the reference image is needed when calculating Q. However,
here the free energy is simplistically represented with a single
scalar (the entropy of the predicted residuals) which is neg-
ligible to the image data. From this point, our metric can be
approximately regarded as a NR method.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiment Configurations

The experiment configurations concentrate on the sparse
representation for images. Specifically, we divide the image
into 8×8 non-overlapped patches. Each patch is vectorized as
the signal y and we seek its sparsest representation according
to III-A described. The overcomplete DCT dictionary is em-
ployed as the predefined dictionary D, the size of D is 64×128
with totally 128 atoms available for representing each patch.
We restrict the maximum number of nonzero coefficients for
representing each patch to 20. The orthogonal matching pursuit
(OMP) algorithm [10] is utilized to find the representation
coefficients.

B. Experimental Results and Comparison

We test the proposed image quality metric on three widely-
used image databases, LIVE [11], TID2008 [12], CSIQ [13]
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TABLE I. SROCC VALUES ON LIVE

Methods JP2K JPEG WN Blur FF
PSNR 0.8898 0.8409 0.9853 0.7816 0.8903
SSIM 0.9528 0.9116 0.9694 0.9516 0.9553
BIQI 0.9187 0.8886 0.9903 0.9543 0.8205
NIQE 0.8977 0.8661 0.9716 0.9329 0.8644

DIIVINE 0.9025 0.7511 0.9878 0.9584 0.8592
FEDM 0.9145 0.8543 0.9153 0.7594 0.8230
Our’s 0.9299 0.8875 0.9089 0.8948 0.8479

TABLE II. SROCC VALUES ON TID2008

Methods JP2K JPEG WN Blur
PSNR 0.8300 0.9011 0.9115 0.8682
SSIM 0.9723 0.9270 0.8310 0.9596
BIQI 0.6940 0.8443 0.7386 0.7468
NIQE 0.8964 0.8608 0.7797 0.8165

DIIVINE 0.8525 0.6309 0.8085 0.8237
FEDM 0.8162 0.7594 0.6855 0.7980
Our’s 0.8991 0.8112 0.6552 0.9163

with the frequently encountered distortion types, JP2k, JPEG,
Gaussian White Noise (WN), Blur and Fast fading (FF).
The Spearman rank order correlation coefficient (SROCC) is
calculated between the objective results given by the image
quality metric and the subjective evaluation scores. The higher
SROCC value means the objective metric is more consistent
with subjective evaluation and the objective metric is superior.
We compare our metric with a number of representative IQA
metrics. Among them, PSNR, SSIM [1] are the two most
influential FR methods. As our metric can be approximately
regarded as a NR method, the classical NR methods, BIQI [14],
DIIVINE [5], NIQE [15] are also included for comparison.
BIQI and DIIVINE are training-based methods, while NIQE
demands a prediction model trained from natural images. In
addition, the free-energy based RR method FEDM [6] is also
compared. We list the experimental results clearly in Table I,
II and III. From the tables, our method exceeds FEDM in most
cases which verifies that sparse representation is closer to the
perception behavior than AR model and more reasonable to
simulate the internal generative model as we supposed. With
compared to the FR methods, our metric performs better than
PSNR in some distortion types, while inferior to SSIM. Noted
that our method needs just a number from the reference image,
while the FR methods require the whole reference image for
quality assessment. Though our method is training-free, it is
still comparable even better than the competing NR methods
over the three databases.

V. CONCLUSION

In this paper, we have proposed a perceptual image quality
metric by combining the free-energy principle and sparse
representation. The proposed metric was inspired by the explo-
ration of the perception mechanism and information represen-
tation of the brain. In addition, it’s conveniently computed and
demands only a number from the reference image which can
be embedded into the header file. Therefore, it’s practical for
image applications to measure the image quality. Experimental
results confirmed the effectiveness of the proposed metric.

TABLE III. SROCC VALUES ON CSIQ

Methods JP2K JPEG WN Blur
PSNR 0.9361 0.8879 0.9363 0.9291
SSIM 0.9605 0.9543 0.8974 0.9609
BIQI 0.7084 0.8673 0.8794 0.7713
NIQE 0.9062 0.8832 0.8097 0.8945

DIIVINE 0.8304 0.7998 0.8662 0.8716
FEDM 0.8945 0.9166 0.8246 0.8522
Our’s 0.9028 0.8886 0.8307 0.8909
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