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Abstract

Human gait has been shown to be an efficient bio-
metric measure for person identification at a distance.
However, it often needs different gait features to han-
dle various covariate conditions including viewing an-
gles, walking speed, carrying an object and wearing
different types of shoes. In order to improve the ro-
bustness of gait-based person re-identification on such
multi-covariate conditions, a novel Swiss-system based
cascade ranking model is proposed in this paper. Since
the ranking model is able to learn a subspace where
the potential true match is given the highest ranking,
we formulate the gait-based person re-identification as
a bipartite ranking problem and utilize it as an effective
way for multi-feature ensemble learning. Then a Swiss
multi-round competition system is developed for the
cascade ranking model to optimize its effectiveness and
efficiency. Extensive experiments on three indoor and
outdoor public datasets demonstrate that our model out-
performs several state-of-the-art methods remarkably.

Introduction
In recent years, surveillance cameras have been widely de-
ployed almost everywhere in the city. To automatically ana-
lyze the data captured from these cameras (e.g., to recognize
or search a suspicious person), some biometric technolo-
gies (e.g., face recognition) are developed and have shown
more and more important roles in public security applica-
tions and crime investigation. However, one major disad-
vantage of these technologies is that they can only be used
in some cooperative conditions (e.g., the front-face is mostly
available). In some uncooperative situations, these biometric
features may be obscured, preventing the effective recogni-
tion of the suspicious person. To address this problem, hu-
man gait can be used as an alternative, which is able to as-
certain the identity of a person at a distance from a camera
using behavioral features. An important application of gait
recognition is person re-identification, which is defined as
the task of assigning the same identifier to all the instances
of the same object (Vezzani, Baltieri, and Cucchiara 2013).
However, gait-based person re-identification often needs dif-
ferent gait features to handle various covariate conditions,
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Figure 1: The changes in covariate conditions make the gait
features less distinguishable. (a) The change of carrying con-
dition and clothing, and (b) the change of viewing angles.
The first row of each box represents different observations
from the same subject with the second row representing the
corresponding gait feature.

including viewing angles, walking speed, carrying an object
and wearing different shoes. As shown in Fig. 1, due to the
significant changes in covariate conditions, especially view-
ing angle, carrying condition and clothing, the resulting gait
features of the same person differ greatly with each other.

Basically, the gait-based person re-identification problem
tends to be formulated as a distance measurement problem,
rather than a classification problem in which each person is
treated as one class. This is not only due to the variable co-
variant conditions mentioned above, but also because of the
difficulty of training extremely under-sampled class distri-
bution (i.e., each person has only a few gallery sequences for
training). Also, it is not reasonable that each newly-added
subject must be re-trained every time for real world applica-
tions. Following the distance-measurement-based problem
formulation, most existing approaches focus on extracting
robust gait features. One of the most widely used gait fea-
tures is Gait Energy Image (GEI) (Han and Bhanu 2006),
which is obtained by averaging silhouettes across a gait cy-
cle. However, it has been shown to be sensitive to various
covariate conditions. To overcome this problem, a number
of variations of GEI have been proposed. The basic idea
is to select features from the most dynamic areas of hu-
man body. Yang et al. (Yang et al. 2008) propose to en-
hance those dynamic regions which are located by a vari-
ance analysis, and then extract enhanced GEI (EGEI) for
recognition. Bashir et. al. (Bashir, Xiang, and Gong 2009)
present a method to distinguish the dynamic and static ar-
eas of GEI by using Shannon entropy at each GEI pixel,
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providing a new gait representation called GEnI. Lam et
al. (Lam, Cheung, and Liu 2011) propose the Gait Flow Im-
age (GFI) by using an optical flow field of the binary sil-
houette sequence. Instead of extracting from binary silhou-
ette, Bashir et al. (Bashir et al. 2009) propose another optical
flow fields based gait representation which is computed from
the normalized and centred person images over a gait cycle.
Their representation consists of a Motion Intensity Image
(MII) and four Motion Direction Images (MDIs). None of
the above methods can deal with large view changes, for
which completely different models are developed. Most of
these work aims to transform the gait features from one
viewpoint to another by learning a View Transformation
Model (VTM) (Worapan Kusakunniran and Zhang 2009).
A different method is proposed by Bashir et al. (Bashir, Xi-
ang, and Gong 2010a) which does not reconstruct gait fea-
tures in different views, but models their correlation using
Canonical Correlation Analysis (CCA) and uses the cor-
relation strength as similarity measure. However, none of
these view-specific models can address other covariate con-
ditions. A first attempt under a more complex setting finds
that when both the gallery and probe sets contain differ-
ent and unknown covariate conditions, the performance of
existing methods would drop dramatically (Bashir, Xiang,
and Gong 2010b). Inspired by the success of using learning-
to-rank in document retrieval (Joachims 2002) and com-
puter vision (Han and Bhanu 2006), Martı́n-Félez and Xi-
ang (Martı́n-Félez and Xiang 2012) formulate gait recogni-
tion as a bipartite ranking problem and use the PrRankSVM
for recognition under a genuine uncooperative setting. Gen-
erally speaking, their work can achieve promising results
in those scenes with one or two unknown covariate condi-
tions settings. However, they may fail when the covariate
conditions of scenes become extremely difficult and unpre-
dictable, which can be seen from the following experiments
in this paper. This is mainly because the over-simplified gait
feature GEI used for learning, which contains very limited
information of the walking patten.

To address the oversimplified gait feature problem, five
such state-of-the-art gait features encoding both static, time-
variant and motion information are extracted in this paper,
including GEI, EGEI, GEnI, MII and MDIs. A problem
raises up that, both distance-measurement-based method
and learning-to-rank based method could not give good re-
sults with a simple mixture of different features, as in-
stances with multi-features could not be learned well by
one distance-measurement model or one linear rank model.
Thus, a Swiss multi-round competition system of cascade
ranking model is developed for multi-feature ensemble
learning in this paper. In this system, a series of rankers
are applied to every pair of matches between probe and
gallery gait sequences. The initial ranker eliminates a large
number of incorrect examples with very little processing,
while the subsequent layers eliminate other incorrect ones
by using more features at the cost of additional compu-
tation. Thus through such as multi-round competition, the
effectiveness and efficiency of cascade ranking model can
be improved remarkably. Extensive experiments are per-
formed on three benchmarking datasets, including the in-

(a) (b) (c) (d) (e)

Figure 3: Examples of gait features. (a) GEI. (b) EGEI. (c)
GEnI. (d) MII. (e) MDIs (three directions).

door CASIA database (CASIA 2005), the outdoor Soton
Large dataset (Shutler et al. 2004), and the actual monitoring
database (PKU 2014). The experimental results demonstrate
that our method outperforms several state-of-the-art meth-
ods remarkably.

Gait-based Person Re-identification
Multiple Gait Features
The current trend in gait representation is appearance and
period-based representation, such as the most popular gait
feature GEI. GEI reflects a dynamic characteristic of a gait
cycle. While, the intensity of specific subject’s motion and
the timevarying characteristics are hard to be obtained from
GEI. As there’s no one good feature meeting all demands
existing, five state-of-the-art gait features are used in this
study: GEI, EGEI, GEnI, MII and three MDIs. Some ex-
amples are shown in Fig. 3. GEI is obtained by averaging
silhouettes over a gait cycle. EGEI constructs a dynamics
weight mask to enhance the dynamic region and GEnI is
computed by regarding the value of the GEI as the proba-
bility that the pixel takes the binary value. Unlike EGEI and
GEnI both of which aim to select the intrinsic dynamic gait
patterns, MII and MDIs are extracted over the optical flow
fields. Among them, MII measures the intensity of the rela-
tive motion at each pixel location, and each MDI represents
the likelihood along one specific motion direction during a
complete gait cycle. The simple mixture of different features
does not give good results with distance-measurement-based
methods. Meanwhile, the ranking-based PrRankSVM tends
to have difficulty in looking global convergence. Therefore,
a cascade ranking method is future developed in our paper
for multi-feature ensemble learning.

Gait Recognition by Ranking
Gait-based person re-identification is to solve the problem
of retrieving the best matched sample of the given probe
gait sequence from the gallery set. Given the gallery set
X = {(xg, yg)}|G|g=1 and the probe set X = {(xp, yp)}|P |p=1

where xg and xp are the gait feature vectors, yg is the known
identity of xg while yp is the desired one. |G| and |P | are
the numbers of samples in the gallery set and the probe
set, respectively. Instead of using the gait features as the
ranking features directly, we construct another feature space

X ′ =
{
{(xp,g, yp,g)}|G|g=1

}|P |
p=1

to represent the relevant gait

features of the pair of the gallery gait feature xg and the
probe gait feature xp. Specifically ,

xp,g = |xp − xg| , yp,g =

{
1, yp = yg
0, yp 6= yg

(1)
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Figure 2: Schematic depiction of a the ranking cascade. A series of rankers are applied to every pair of match. The initial
ranker eliminates a large number of incorrect examples with very little processing. The subsequent layers eliminate additional
incorrect using more complex rankers. In this paper, the cascade model 0 is only an initialization of the ranking using NN, the
subsequent cascade models use a SVM, and a winner-against-winner strategy is implemented.

Thus, the gait-based person re-identification problem can
be seen as a ranking problem. For a specific probe gait
feature, there exists a set of relevance ranks of the pos-
sibly matched gait sequences from the gallery set G ={
xp,g1 , xp,g2 , · · ·xp,g|G|

}
, where |G| is the number of ranks

and � indicates the ordering. Note that there only exist two
kinds of relevance ranks, namely, the correct and incorrect
ranks/matches. Let x̂+p,g = xp,g with yp,g = 1 donates the
correct ranks/matches, while x̂−p,g = xp,g with yp,g = 0 do-
nates the incorrect ranks/matches. So our goal is to find a
score model δ such that, for all ranks/matches x̂+p,g and x̂−p,g ,
we have δ

(
x̂+p,g

)
� δ

(
x̂−p,g

)
. In this case, the ranks between

pairs that contain two matching gait features x̂+p,gi and x̂+p,gj
(or two mismatching ones x̂−p,gi and x̂−p,gj ) do not matter.

Swiss-System Based Cascade Ranking
By formulating the gait-based person re-identification as a
bipartite ranking problem, the recognition process can be
seen as a competition which outputs the ranks among par-
ticipants. While the participants have changing various co-
variate conditions, it is fairer to obtain ranks through multi-
round competitions rather than only one competition. In the
chess tournament, this process is called as Swiss-system.
We thus use the similar terminology to formulate our gait
multi-round ranking model. A Swiss-system tournament
runs with a major principle that participants compete with
each other according to their scores in the last competition.
More specifically, the first round is either drawn at random
or seeded according to some prior orders, and then all partic-
ipants proceed to the next round in which winners are pitted
against winners while losers are pitted against losers, and so
on in subsequent rounds. Participants competing with win-
ers will obtain a higher score in each round. Note that our
problem differs slightly from the chess competition in that
there is no guarantee that a higher ranking score in the first
random round is really the top rank candidate. Subjects with
the same covariance conditions appear more likely in the top
k matches to the target. So the ranking scores from the first
ranker is more used as grounds of grouping. For the follow-
ing ranking round, the participants are divided into different

Algorithm 1 Swiss-system based cascade ranking algorithm
1: Initialize the ranking score using the first cascade model
M0 = 〈δ0〉 ;

2: for t = 1 · · ·T do
3: Select a cascade model Mt = 〈Jt, Rt, δt〉 over the

remaining instances;
4: Prune the last ranked instances with the pruning func-

tion Jt, based on the ranking scores S{Mt−1};
5: Divide the instances into Nt groups, using the group-

ing function Rt ;
6: for r = 1 . . . Nt do
7: Output the ranking score S{Mr

t } with ranker δrt ;
8: Balance each set of scores: S{Mr

t } (xp,gi) =

S{Mr
t } (xp,gi)−

1
Nr

t

Nr
t∑

i=1

S{Mr
t } (xp,gi);

9: end for
10: Combine the current score for Nt groups with the

score in the last round;
11: end for

groups to rank respectively, before which a pruning func-
tion is applied to speed up. Scores from each group are bal-
anced for each round to narrow the scoring gaps from differ-
ent groups, just like the chess competition. And the results
from former round is combined with scores of current round
to output the rank of the current round.

As described in Algorithm 1, our cascade ranking model
consists of a sequence of ranking models {M0 · · ·MT },
where each model Mt = 〈Jt, Gt, δt〉 contains a set of
rankers {St}. Each ranker St is associated with a pruning
function Jt, a grouping function Gt and a local ranking
function δt. Each stage, St receives the set of the ranked
candidate matches from the previous stage as its input and
then performs the following operations: firstly, the prun-
ing function Jt is used to remove a number of candidate
matches from the input set, which reduces the involved pairs
in this stage); Secondly, the grouping function Gt is applied
to divide the remaining matches to Gt groups. The group-
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ing method follows the principle of Swiss-system that pairs
with a higher score from the last round are grouped together
and matches with a lower score are grouped together; After
grouping, the score contribution of the local ranking func-
tion δt is added to each group of the candidate matches so
as to improve the quality of top k matches. As for some
rankers, such as PrRankSVM, the ranking scores give no
practical meaning except for ranks. For instance, there is no
difference between the group of ranking scores:{1, 2, 3} and
{100, 200, 300}. Therefore, a simple normalization method
is applied to balance the scores of each group. Finally, the
scores in this round are combined with the last round to gen-
erate a new rank which will be forwarded to the next stage
for further pruning and re-ranking. Notice that the first cas-
cade model does not contain the pruning function J0 and the
grouping function δ0, as there is no pre-ranked information
available. In this case, none instances will be pruned and no
groups will be divided. For the cascade ranking model, the
remaining problem is how to define the pruning functions,
grouping functions and local rankers.

Pruning Functions. In (Yu, Tan, and Tan 2006), three
pruning methods Jt are defined, including rank-based,
score-based and mean-max threshold pruning functions. In
our problem, however, the scores provided by the model has
no practical meaning but is only used for ranking. Mean-
while, the mean and variances scores with different rank-
ing model of each round differs from each others. Thus the
rank-based pruning function is used here. With a cutoff value
Jc (βt), the pruning function is defined as:

Jt :

{
Keep, if S{Mt−1} (pi) ≥ Jc (βt) ;
Pruned, otherwise.

(2)

A match is pruned if it ranks below the cutoff Jc (βt), where
βt is the the pruning parameter and the cutoff value is:

Jc (βt) = (1− βt)
∣∣S{Mt−1}

∣∣ , (3)

where
∣∣S{Mt−1}

∣∣ is the number of the inputs from Mt−1.
Large values of βt lead to less aggressive pruning. That is,
βt = 1 means that no matches will be discarded.

Grouping Functions. After pruning the least probable
candidates, the remaining matches will be divided into Nt

groups with the grouping functionRt. Based on the fact that
the number of correct matches is far larger than the num-
ber of wrong matches (that is N{x̂+

p,g} � N{x̂−p,g}, where
N{x̂+

p,g} and N{x̂−p,g} are the numbers of correct and wrong
matches), we use a novel greedy algorithm for grouping to
avoid that there exists a group without any correct match.
The grouping algorithm is described in Algorithm 2. Here
Nt is the pre-defined parameter of how many groups to be
divided. A large Nt is not advised as the too many groups
with little data in each group is not good for training.

NN & SVM Ranker. We now turn to the problem of
learning a well-chosen local ranker. Note that the ranker
used in the first cascade model should be a no-training
model. For simplicity, nearest neighbor (NN) is adopted
in our study as δ0. As mentioned before, the sample

Algorithm 2 The greedy algorithm for grouping
1: Based on the number of correct matches N{x̂+

p,g} , divide the
ranked instances into N{x̂+

p,g} + 1 subsets:{
S′1, S

′
2, · · ·S′N{x̂+

p,g}+1

}
={{

. . . S
x̂+
1

}
,
{
S
x̂+
1
+1

. . . S
x̂+
2

}
. . .

{
SN{x̂+

p,g}+1 . . .

}}
2: for k = 1 . . .

(
N{x̂+

p,g} + 1−Nt

)
do

3: Select the subset with minimum instances, denoted by S′i;
4: Combine S′i with the smaller adjacent subset:

S′i ←
{

S′i−1 ∪ S′i, if N{S′i−1} ≥ N{S′i+1};
S′i ∪ S′i+1, otherwise.

5: Update the size of each subset;
6: end for

space has been transferred from X = {(xp, yp)}|P |p=1 to

X ′ =
{
{(xp,g, yp,g)}|G|g=1

}|P |
p=1

. Thus, the matches should

be ranked according to the similarity (or distance) between
the feature and a zero vector, which means 0 gets the highest
score. The NN ranker is formulated as:

δ0 (xp,g) = 0− ‖xp,g‖ (4)

As for the rankers in the subsequent cascade model δt, t 6= 0,
rather than the simple distance-measurement-based ranker, a
more complicated training strategy should be used to learn
the internal feature relationship of each group. Meanwhile,
using the NN ranker again will not change the ranks any
more. Therefore, PrRankSVM is chosen in this study since it
is suitable for a large-scale learning problem with a severely-
overlapped feature space (Chapelle and Keerthi 2010). The
scoring function is formulated as:

δt (xp,g) = wTxp,g, t 6= 0 (5)

Then by going through all x̂+p,g and x̂+p,g in dataset X ′, we
obtain a set of all pairwise relevant difference vectors which
meet wT

(
x̂+p,g − x̂−p,g

)
> 0. A PrRankSVM model is then

defined as the minimization of the objective function:

1
2‖w‖

2
+ C
|X′|∑
i=1

ξi

s.t. wT
(
x̂+p,g − x̂−p,g

)
≥ 1− ξi, ξi > 0

(6)

where i is the index of the preferred match, |X ′| is the total
number of the preferred pairs used for training, C is a posi-
tive importance weight on the ranking performance and ξ is
the hinge loss function used in SVM. It will lose the global
ranking information from previous rounds if just the rank-
ing results from the last round are used. For example, a con-
testant with “poor strength” in previous rounds may give a
good result in the current ranking round as it’s ranked in the
“loser-to-loser” group. So it’s more reasonable to combine
the ranking scores from the previous cascade and current
cascade. Hence we combine the ranking scores as follow:

S{Mt} (xp,g) = αtS{Mt−1} (xp,g) + (1− αt) δt (xp,g) ,
(7)
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Figure 4: Visualizing the CASIA, Soton and PKU datasets.

where αt is the parameter to weight scores from the two
models. The smaller value of αt , the less contribution the
last cascade model made, i.e., αt = 0 means the re-ranking
result fully depends on the current model.

Experiments
Experimental Settings
Extensive experiments have been carried out on the three
gait databases: CASIA, Soton and PKU HumanID. As
shown in Fig. 4, they cover an indoor environment (CA-
SIA), outdoor (Soton) and no controlled scenario (PKU).
All experiments are repeated ten times with different train-
ing/testing splits to mitigate the effects of subset singu-
larities. The average gait recognition performance from
these different trials are displayed on Cumulative Match
Score (CMS) curve, which shows the percentage of the
probe set whose identity has been correctly matched in
the gallery among the top k matches. Our model is com-
pared with six state-of-the-art approaches: Baseline (Yu,
Tan, and Tan 2006), GEnI (Bashir, Xiang, and Gong
2009), EGEI+Gabor+DCV (Yang et al. 2008), fusion of
MII and three MDIs (Bashir, Xiang, and Gong 2009),
GFI (Lam, Cheung, and Liu 2011) and the newly proposed
PrRankSVM (Martı́n-Félez and Xiang 2012).

Experimental Results on the CASIA Dataset
The CASIA Gait Database B contains 124 subjects cap-
tured under three different covariate condition changes: car-
rying, clothing, and view angle. Each subject ia captured
from 11 different view angles. For each view, each subject
has 10 gait sequences: six normal ones (NM), two carrying-
bag (BAG) and two wearing-coat (COAT). All the videos are
recorded indoor with a uniform background and controlled
lighting. The 124 subjects are first randomly divided into
training set and testing set for each experiment. Two sets of
experiments are carried on the CASIA database. The first
one (Experiment BGCT) focus on evaluating the different
approaches under carrying and clothing condition changes.
In these experiments, only side view (90◦) gait sequences
are used as the effect of view is investigated in another ex-
periment. Among the 10 side-view sequences available for
each subject, two NM ones out of six are randomly selected
along with the two COAT and the other two BAG, for train-
ing or testing. The second set of experiments (Experiment

Figure 5: Experimental results on the CASIA dataset.

VIEW) is designed to evaluate our model under large view
angle changes. For each possible pair, (90◦, θi) are randomly
picked for training or testing according to the subject. We
use the data sequences under 0◦, 36◦and 72◦for this set of
experiments. Thus in the training set, there exist eight se-
quences of each subject. In the testing test, any of the two se-
quences from 90◦and from θi is used as the gallery set, while
the remaining other six sequences are used as the probe set.

The results are shown in Fig. 5. Due to the intrinsic dif-
ficulty of objects appearing in different wearing and view-
ing conditions, the recognition methods based on the covari-
ate condition-invariant feature (e.g. EGEI, GEnI) perform
much poorer than the ranking-based methods on average.
As we have analysed before, the invariant gait features can-
not handle the problem of tough uncooperative settings. On
the other hand, our model performs better than PrRankSVM
because the used multiple features extract more dynamic in-
formation that is invariant to covariate conditions and the
cascade ranking model extracts the inner ranking relation-
ship by dividing data into sets of groups. The performance
of PrRankSVM drops noticeably compared with the results
reported in (Martı́n-Félez and Xiang 2012) which only tests
with one changing condition. This is unsurprising that with
mixture of more different and unknown covariate conditions,
the difficulty of problem raises.

Experimental Results on the Soton Large Dataset
The Soton Large dataset is a part of the Soton
database (Shutler et al. 2004). It contains 116 subjects cap-
tured in both indoor and outdoor environment. This dataset
has 6 subsets, SotonSetsetA to SotonSetsetF. In our exper-
iments the outdoor sets SotonSetsetE and SotonSetsetF are
used. Unlike other indoor datasets, there are no foreground
walking silhouettes provided, which increases the difficulty
of silhouettes-based gait recognition. Both the two sets con-
tain two directions sequences: L means that the subject is
walking towards the left side of the scene while R means that
the subject is walking towards the right side of the scene. In
our experiments, we randomly select one of the two direc-
tion sequences as the gallery set while the other as the test
set. Moreover, in each set, half of the people are randomly
selected for training and the rest for testing. For the test-
ing, half sequences for each subject are used as the gallery
set while the rest as the probe set. The results are shown in
Fig. 6. For this set of experiments, walking direction poses
the main changing covariate condition. Each subject’s walk-
ing direction in the test sequences is always different from
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Figure 6: Experimental results on the Soton large dataset.

that in the gallery data. Baseline method based on GEI and
direct L1-norm measurement gains the poorest performance
since in the gallery data with the same walking direction al-
ways appears to be the best match. Other features such as
EGEI and GEnI have a limited improvement in recognition
accuracy compared with the baseline as it cannot deal with
big difference of viewing angles. Meanwhile, the fusion of
MII and MDIs gets a better result as it enhances the mo-
tion information in flow fields. Consistent with the results
on CASIA dataset, ours and PrRankSVM performs better
than others clearly. And the gaps between our method with
PrRankSVM shows the significant improves of the usage of
multi-features and cascade ranking model.

Experimental Results on the PKU Dataset
The PKU HumanID Gait Database (PKU) is an outdoor
database captured in complete uncontrolled environment.
It is composed of videos of 18 labeled subjects crossing
12 cameras in a campus. The subjects are all masked with
bounding box by manually. Usually, one subject walks alone
with a pre-designed walking route in other gait databases.
However, the subjects in the PKU database walk totally
freely and unpredictably. Moreover, other pedestrians except
for the subjects are allowed to show up in the cameras. In
this case, the occlusion of these unidentified pedestrians also
increases the difficulty of the person re-identification. The
major changing conditions include the free walking route
of each subject, various camera setting, background, cap-
ture time and changing lighting. Two cameras WMHD and
YTX are tested. In WMHD, every labeled subject has three
sequences: two frontal views and one back view. For each
subject, the temporal nodes that overlap the first frontal view
sequences are used as the gallery data, and the other nodes
are used as the probe data. As for YTX, walking sequences in
two back views and one frontal view are captured. The tem-
poral nodes covering the first back view sequence are taken
as the gallery data, and the others are taken as probe data.
Our experiments on the PKU dataset focus on the perfor-
mance of cross-database recognition, for which the model is
already well trained on the first dataset and then evaluated
on another dataset. We use the data from the CASIA dataset
for training and the data from the PKU dataset for testing.

Since the PKU databse has a limited number of subjects,
each with some long walking sequences, the multi-object
tracking measurement rather than CMS is adopted for the
performance evaluation. This is because some methods may
fail to extract a gait cycle, but yields a higher accuracy with

Figure 7: Experimental results with PKU dataset.

smaller evaluation base. For each camera c (c = 1, · · ·C),
Cn nodes are set in the time domain. Each node ncj has
a temporal range (such as 200 frames from the beginning
to end). For a specified target i in camera c during time tj
to tj+1, if the recognition result coincides with the ground-
truth, the result will be recognized to match the node. A set
of gallery nodes and a set of probe nodes are predetermined
for each target. WithRi

t,c andN i
t,c representing the correctly

matched notes and all labeled probe node for subject i under
camera c, the precision metrics is formulated as:

Pn =

M∑
i=1

Rc∑
t=1

Ri
t,c/

M∑
i=1

Nc∑
t=1

N i
t,c (8)

where M is the number of subjects, Rc is the number of
correctly matched nodes and Nc is the number of all labeled
probe nodes. As the model is learned on another dataset, the
performance of the cross-database experiments drops than
that of the the same-database. This is unsurprising because
the covariate condition changes of CASIA and PKU are ob-
viously different. In comparison, our ranking still gives bet-
ter results under this challenging dataset as it learns trans-
ferable information to cope with the different camera. The
performance of all methods with YTX are poor because the
occlusion from other pedestrians increases the difficulty of
gait period analysis, leading to no gait feature extracted dur-
ing the corresponding temporal nodes. Nevertheless, with
our rank 1 result of 21%, this does give an indication that
our model is superior even with cross-database recognition.

Conclusions
In this work, we present a novel cascade ranking
model based on Swiss-system for gait-based person re-
identification. We have shown that with cascade grouping
ranking and multi-features, the proposed model can improve
the accuracy remarkably on indoor, outdoor and real moni-
toring gait databases. In future work, we will investigate how
to build the multi-class ranking model rather than one ranker
for all so as to improve the robustness to the circumstances.
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