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ABSTRACT

Recently Convolutional Neural Networks (CNNs) have
achieved great success in different fields including image
instance retrieval. However traditional global pooling ap-
proaches fail to capture all possible discriminative informa-
tion of CNN activations and treat activations over channels
equally regardless of the different importance between chan-
nels. In this work, we focus on the mentioned problem
of global feature pooling over CNN activations for image
instance retrieval. We make two contributions. First, we
introduce a channel-wise SQUare-root (SQU) pooling (2-
norm) approach,which makes better use of information over
activation maps and is superior to Average (1-norm) and Max
pooling (infinity norm), in the context of instance retrieval.
Second, we further improve SQU by learning a gating func-
tion that weights the contributions of different channels, in an
end-to-end manner. Extensive experiments on 6 benchmark
datasets show that the proposed strategies achieve consider-
able improvements over state-of-the-art.

Index Terms— Instance Retrieval, CNN, Square-root
pooling, Learning to gate.

1. INTRODUCTION

Image instance retrieval is the discovery of images from a
database representing the same object or scene as the one
depicted in a query image. In this field, descriptors play a
significant role in its performance. Previous works for image
instance retrieval are mainly image-level descriptors aggre-
gated from handcrafted local features, such as the well-known
SIFT [1], VLAD [2] and Fisher vectors [3]. These approaches
can be further improved by numerous strategies [4, 5, 6, 7]
Motivated by the remarkable success of CNNs [8, 9, 10] in
image classification [11], CNN-based descriptors [12, 13, 14,
15, 16, 17, 18] have been progressively replacing handcrafted
descriptors [6] as state-of-the-art for image instance retrieval.

Generally speaking, deeply learned descriptors in image
instance retrieval are aggregated by pooling over activation
maps extracted from intermediate layers [19, 20, 12, 13,
14].Initial study [20] proposed to use representations ex-
tracted from fully connected layer of CNN.More compact de-
scriptors [12] can be derived by performing either global max
∗The first two authors contributed equally.

(MAC [14]) or average pooling (e.g. SPoC [12]) over activa-
tion maps output by convolutional/pooling layers. However,
global max pooling focus on the max activation and global
average pooling regards low and high response the same and
thus these approaches may ignore potentially discriminative
information in a single activation map. Further improvements
are obtained by spatial and channel-wise weighting of activa-
tion maps [13], making us noticing that CNN-based features
over different channels may devote different contributions
to the performance. Inspired by R-CNN [21] for object de-
tection, Tolias et al. [14] proposed ROI-based pooling on
activation maps, Regional Maximum Activation of Convolu-
tions (R-MAC), which significantly improves global pooling
approaches. However, R-MAC still follows the idea of Maxi-
mum pooling, which will discard some potentially necessary
information and also treat different channels equally.

In recent works [20, 15, 16, 17, 18], image classifica-
tion pre-trained CNNs are repurposed for instance retrieval,
by fine-tuning them with ranking loss functions such as con-
trastive loss [22] and triplet loss [23]. Results show that fine-
tuned models outperform pre-trained ones by a large margin,
when training and test datasets belong to similar domains.

For the better usage of potentially discriminative informa-
tion in a CNN feature map, we introduce Square-root pool-
ing (SQU) as an alternative operator to regular global aver-
age and max pooling, in the context of instance retrieval.SQU
improves the quality of global descriptors with either global
average or max pooling, which is our first contribution. Our
second contribution is we propose to further boost the perfor-
mance of SQU by learning a channel-wise gating function to
weight the importance of different channels, termed Gated-
SQU. In particular, to adapt the gating function for instance
retrieval, we integrate GatedSQU layer with ranking loss for
learning the gating parameters in an end-to-end manner. We
perform systematical evaluations for both SQU and Gated-
SQU on 6 benchmark datasets. Results demonstrate the ef-
fectiveness of SQU and GatedSQU over state-of-the-art.

2. METHOD

2.1. Aggregated CNN Descriptors for Instance Retrieval

Consider an imageX as input to CNN, we describe the image
with activation maps extracted from intermediate layer, de-
noted as X = {x1, ...,xC}, where xc represents a activation



map of width W and height H , C is the number of channels.
Global feature pooling is performed to convert each activation
map with size N =W ×H into a single value,

fα(xc) = (
1

N

N∑
i=1

(xc,i)
α)

1
α . (1)

fα(xc) for all channels are concatenated to form a C-
dimensional CNN descriptor. Eq. 1 encompasses recent
works on global pooling [12, 13, 14] for image retrieval.
For instance, α = 1 represents 1-norm average pooling for
SPoC [12], while α =∞ denotes max pooling for MAC [14].

The aggregated global CNN descriptors can be further im-
proved by post-processing techniques such as PCA whiten-
ing [12, 13, 14]. Specifically, the descriptors are firstly L2
normalized, followed by PCA projection and whitening with
a pre-trained PCA matrix. Finally, the whitened vectors are
L2 normalized and compared with inner product.

2.2. SQU: SQUare-root pooling

Theoretical analysis [24] has shown that max (or average)
pooling may perform better than average (or max), depend-
ing on dataset as well as features. This motivates us to find
an intermediate α-norm between∞ and 1 that is superior to
either of them. A natural choice could be Square-root pooling
(SQU) with α = 2, i.e. fSQUα (xc) = ( 1

N

∑N
i=1 xc,i

2)
1
2 . In

fact, SQU suppressed other pooling operators in image classi-
fication with Bag-of-Words built on SIFT [24]. Here, we ex-
plore the feasibility of SQU in the context of image instance
retrieval with CNN features. Retrieval experiments in Sec-
tion 3.3 highlight that SQU outperforms MAC and SPoC by
a large margin.

2.3. GatedSQU: learning to gate SQU

Recently, Kalantidis et al. [13] proposed CroW to improve
SPoC by spatial and channel-wise weighted average pooling.
However, we observe that CroW is limited to SPoC, there is a
significant drop in performance if apply CroW to other pool-
ing operations like MAC. Instead of the heuristic approach
like CroW, we propose to learn a data-driven gating function
that weights the contributions of channels. Moreover, the gat-
ing mechanism can benefit from domain-specific knowledge
for the purpose of image instance retrieval.

To this end, we design an end-to-end pipeline to learn a
desirable gating function with deep neural networks. First,
we crop the CNN to the last pooling layer (e.g. pool5), then
append a new GatedSQU layer which performs pooling over
activation maps output by pool5, finally followed by a triplet
loss tailored for the retrieval task. In particular, the GatedSQU
layer applies a gating function on SQU.

GatedSQU layer. There are many ways to learn a gating
function [25]. In this work, we design a simple channel-wise

gating function on SQU, which is defined as

fGatedSQUα (xc) = σ(s · wc)fSQUα (xc), (2)

where w = {w1, ...wC} denote channel-wise weights, σ(.) is
the sigmoid function. s is a scale constant to control the speed
of driving σ(.) towards 0 or 1 (i.e. a logic gate over channels).
Eq. 2 is differentiable, thus, the gating parameters w can be
optimized via stochastic gradient descent. More precisely, we
compute the gradient of Eq. 2 w.r.t gating parameter wc and
activation map element xc,i as follows

∂fGatedSQUα

∂wc
= σ(s · wc)(1− σ(s · wc))fSQUα (xc), (3)

∂fGatedSQUα

∂xc,i
=
xc,iσ(s · wc)
NfSQUα (xc)

(4)

Finally, we apply l2 normalization after GatedSQU, resulting
in a C-dimensional normalized descriptor.

Learning with triplet Loss. Following existing works [15,
17, 18], we choose the triplet loss which is widely used for
the retrieval task. A triplet (Xq, X+, X−) contains a query
image Xq , a positive image X+ and a negative image X−.
Query Xq is more similar to positive image X+ than to
negative image X−. Image similarity is measured by l2 nor-
malized GatedSQU descriptors. Thus, the triplet needs to
meet the condition that k(Xq, X+) > k(Xq, X−), where
k(·, ·) denotes the similarity of a pair. Accordingly, we de-
fine the triplet loss as Lq,+,− = max{0,m + k(Xq, X−) −
k(Xq, X+)}, where m is a positive margin constant.

3. EXPERIMENTS

3.1. Datasets and Metrics

We evaluate our method on six benchmark datasets. INRIA
Holidays [26] dataset is composed of 1491 scene-centric im-
ages, 500 of them are queries. Following [20], we use the
rotated version of Holidays, where all images are with up-
right orientation. Oxford5k [27] and Paris6k [28] are build-
ings datasets respectively consisting of 5062 and 6412 im-
ages. For both datasets, there are 55 queries composed of 11
landmarks, each represented by 5 queries. To evaluate the per-
formance at large scale, we additionally combine 100k Flickr
images [27] with Oxford5k and Paris6k respectively, referred
to as Oxford105k and Paris106k from here on. The Uni-
versity of Kentucky Benchmark (UKBench) [29] consists of
10200 VGA size images, organized into 2550 groups of com-
mon objects, each object represented by 4 images. All 10200
images are serving as queries.

Following the standard protocols, for Holidays, Oxford5k
and Paris6k, retrieval performances are measured by mean
Average Precision (mAP). For UKBench, we report the aver-
age number of true positives within the top 4 returned images
(4×Recall@4).



Table 1. Comparison of SQU with MAC [14], SPoC [12] and
R-MAC [14]. The former (latter) number in each cell repre-
sents performance generated by off-the-shelf AlexNet (VGG-
16). † represents we generate the results of MAC, SPoC and
R-MAC, based on the authors’ released codes. All experi-
ments are performed without PCA Whitening.

Method Holidays Oxford5k Paris6k UKBench
R-MAC† 79.8/84.7 54.0/57.9 66.1/76.4 3.55/3.73
MAC† 73.7/79.1 45.2/53.0 51.6/67.0 3.48/3.65
SPoC† 77.5/82.6 43.3/52.8 52.5/63.2 3.38/3.68
SQU 81.0/86.0 51.4/60.0 59.6/72.4 3.55/3.76

3.2. Implementation Notes

In this work, we consider 2 CNN architectures : AlexNet [8]
and VGG16 [9]. We test both off-the-shelf networks pre-
trained on ImageNet ILSVRC classification data set and fine-
tuned one tailored for image retrieval [16].

To learn the gating parameters w in the GatedSQU layer,
we leverage the training dataset released by [16], referred
to as 3D-Landmarks from here on. 3D-Landmarks contains
28559 images, organized into 713 clusters of famous land-
marks worldwide. Following [16], we select 551 clusters
(22156 images, 5974 of them are queries) for training and
162 clusters (6403 images, 1691 of them are queries) for val-
idation. Each training tuple contains 1 query, 1 positive and
5 hard negative images. We sample hard negatives by 3 cri-
teria: (1) query and negative belong to different clusters, (2)
negative has most similar descriptor to query and (3) 5 nega-
tives for each query are from different clusters. We initialize
the gating parameters w = 0 (i.e. equal contribution 0.5 for
all channels) and set scale factor s = 10 for the GatedSQU
layer, margin m 0.1, learning rate 0.001 dividing by 2 every 5
epochs, moment 0.9, weight decay 0.001, and batch size of 5
tuples. To accelerate feature extraction, we resize all training
and validation images to 312 × 312 with aspect ratio killed.
We train the network for 30 epochs. The trained model with
the highest mAP on validation set is chosen for testing.

Finally, post-processing can be applied to the GatedSQU
descriptors. We choose PCA whitening in this work. To be
consistent with most related papers [12, 14, 13], we learn
PCA matrix on Paris6k when evaluating on Oxford5k and
vice versa. For Holidays and UKBench, we simply use the
3D-Landmarks dataset for PCA learning.

3.3. Evaluation on SQU

SQU vs. MAC, SPoC and R-MAC. We conduct retrieval ex-
periments following standard practice in [14, 16, 17]: (1) Im-
age size. We use the original image for Oxford5k, Paris6k and
UKBench, while for Holidays we down sample the resolution
to longer side equals to 1024 with aspect ratio maintained and
(2) Cropped query. For Oxford5k and Paris6k, we crop query
images using the provided bounding boxes. These setups are
applied to the subsequent sections as well.

Table 2. Comparison of GatedSQU? with SQU? and
CroW [13]. † denotes our implementations of SPoC and
CroW based on the authors’ released codes. All experiments
are performed without PCA whitening.

Method Holidays Oxford5k Paris6k UKBench
SPoC† 82.6 52.8 63.2 3.68
CroW† 82.9 60.4 70.9 3.65
SQU 86.0 60.0 72.4 3.76
GatedSQU 86.0 64.1 75.4 3.75
SQU? 81.8 73.7 76.9 3.52
GatedSQU? 83.3 76.3 78.2 3.54

Table 1 shows the comparisons of SQU with MAC, SPoC
and R-MAC, using off-the-shelf AlexNet and VGG16. We
observe that SQU outperforms MAC and SPoC by a large
margin on all datasets for both networks. Compared to R-
MAC, SQU performs worse on Oxford5k and Paris6k, but
achieves better performance on Holidays and UKbench.

3.4. Evaluation on GatedSQU

We train the GatedSQU layer with 2 configurations: Gated-
SQU with off-the-shelf VGG16 pre-trained on ImageNet (de-
notes as GatedSQU), and GatedSQU with fine-tuned VGG16
for instance retrieval task [16] (denotes as GatedSQU?).

From SQU? to GatedSQU?. Table 2 studies the advan-
tage of GatedSQU? over SQU?. GatedSQU? consistently im-
proves its SQU? counterpart on all four test datasets. For
GatedSQU, similar trends can be observed on Oxford5k and
Paris6k. Overall, the improvements on Oxford5k and Paris6k
is relatively larger than on Holidays and UKBench. This is
reasonable as 3D-Landmarks training set is building-oriented
like Oxford5k and Paris6k, while Holidays and UKBench are
scene-centric and object-centric respectively.

GatedSQU vs. CroW. Table 2 compares GatedSQU to
CroW [13], which performs both channel weighting and spa-
tial weighting to improve SPoC [12]. First, consistently with
[13], we find CroW is superior to SPoC. Second, SQU per-
forms comparable or better than CroW on all datasets. Gat-
edSQU further increases the gap against CroW.

Off-the-shelf vs. Fine-tuned. Table 2 also compares Gat-
edSQU with GatedSQU?. We observe GatedSQU? largely
outperforms GatedSQU on buildings dataset (e.g. from
64.1% from 76.3% on Oxford5k), but is slightly worse than
GatedSQU on Holidays and UKBench. Again, this is proba-
bly due to the fine-tuned network is biased toward a building-
centric retrieval set. Training on more diverse datasets would
improve the generalization ability of the network to general
image retrieval scenarios.

3.5. Comparison with state-of-the-art

In this section, we compare PCA whitened GatedSQU? with
the state-of-the-art. We split the comparisons into two parts
according to the network used for experiments: off-the-shelf
VGG16 and fine-tuned VGG16.



Table 3. Comparison of GatedSQU with the state-of-the-art, using off-the-shelf VGG16. Post.: post-processing, Dim.: di-
mensionality. § denotes query images for Oxford5k/Paris6k are without query object cropping, ‡ results reported in another
paper [16], � query object cropping is performed on activation maps rather than images for Oxford5k/Paris6k, † our imple-
mentations based on the authors’ codes, following the same setup as GatedSQU. Gray background refers to global pooling
approaches, in which the best results are highlighted in bold.

Method Post. Dim. Holidays Oxford5k Paris6k UKBench Oxford105k Paris106k
Triang.+ Democr. aggr. [6] PCA 1024 72.0 56.2 - 3.51 50.2 -
Triang.+ Democr. aggr. [6] PCA 512 70.0 52.8 - 3.49 46.1 -
Neural Codes [20] PCA 512 74.9 43.5§ - 3.43 39.2§ -
Orderless Pooling [19] PCAW 2048 80.8 - - - - -
R-MAC [14] PCAW 512 86.9‡ 66.9 83.0 3.74† 61.6 75.7
MAC [14] PCAW 512 76.7‡ 56.4‡ 72.3‡ 3.62† 47.8‡ 58.0‡

SPoC [12] PCAW 256 80.2 53.1� - 3.65 50.1 -
SPoC [12] PCAW 512 82.8† 66.9† 76.5† 3.65† - -
CroW [13] PCAW 512 84.9 68.2 79.6 3.63† 63.2 71.0
GatedSQU (Ours) PCAW 512 88.8 69.4 81.3 3.74 63.9 73.4

Table 4. Comparison of GatedSQU? with the state-of-the-art, using fine-tuned VGG16. Most of the marks are with the same
meaning as in Table 3, expect that ¶ denotes PCA is trained end-to-end with tri-R-MAC [17, 18].

Method Post. Dim. Holidays Oxford5k Paris6k UKBench Oxford105k Paris106k
Neural Codes [20] PCA 512 78.9 55.7§ - 3.30 52.2§ -
NetVLAD [15] PCAW 512 86.1 67.6� 74.9� - - -
NetVLAD [15] PCAW 512 85.8† 57.9† 64.6† 3.57† - -
tri-R-MAC [17, 18] PCAW¶ 512 87.9 79.9 85.9 3.59 - -
tri-R-MAC + RPN [17, 18] PCAW¶ 512 88.7 83.2 87.2 3.62 78.6 79.7
sia-R-MAC [16] PCAW 512 82.3 76.3 84.5 3.47† 68.5 77.1
sia-R-MAC [16] Lw 512 82.5 77.0 83.8 3.59† 69.2 76.4
sia-MAC [16] PCAW 512 77.1 76.1 79.0 3.43† 68.9 69.1
sia-MAC [16] Lw 512 79.5 79.7 82.4 3.55† 73.9 74.6
GatedSQU? (Ours) PCAW 512 83.0 80.5 86.1 3.50 75.4 80.0

Off-the-shelf network. Table 3 compares GatedSQU to
state-of-the-art with off-the-shelf VGG16. Most of the ap-
proaches are post-processed with PCA whitening, and with
the same dimensionality (i.e., 512). We observe that Gated-
SQU performs consistently better than other global pooling
operations (in gray background) on all six test datasets. More
importantly, GatedSQU is superior to R-MAC on all datasets
expect Paris6k and Paris106k.

Fine-tuned network. Table 4 compares GatedSQU? to
the state-of-the-art with VGG16 fine-tuned. GatedSQU? out-
performs NetVLAD [15] by a large margin on Oxford5k and
Paris6k, e.g. +20% when NetVLAD performs query crop-
ping directly on images (denoted as †), while it performs a bit
worse on Holidays and UKBench.

We compare GatedSQU? to sia-MAC/sia-R-MAC [16]
which fine-tuned off-the-shelf VGG16 + MAC pooling
with contrastive loss. Both sia-MAC and sia-R-MAC are
post-processed by either PCA whitening or more advanced
discriminative projection learned with labels (denoted as
Lw) [16, 30]. We observe that GatedSQU? significantly out-
performs all variants of sia-MAC/sia-R-MAC on all datasets.

In Table 4, we also present the best results of ROI-based
pooling method tri-R-MAC [17, 18], which simultaneously
trains all VGG16 layers, RPN layers, PCA whitening and
R-MAC pooling with triplet loss in an end-to-end frame-
work, with a much larger training set which contains ∼200k

noisy landmark images and ∼50k clean ones selected from
the noisy set. Our global GatedSQU? performs slightly better
than tri-R-MAC without RPN (i.e. with default ROI sampling
in R-MAC) on Oxford5k and Paris6k, though the GatedSQU
layer and PCA whitening are trained separately with the much
smaller 3D-Landmarks dataset.

4. CONCLUSION

In this work, we study the problem of pooling on deep convo-
lutional features for image instance retrieval. We propose two
strategies to improve global pooling. The first is a square-
root pooling (SQU), a 2-norm operator between the classic
1-norm average and infinite norm max operations. The sec-
ond is a gating function that further enhances SQU. Both SQU
and GatedSQU achieve remarkable performance compared to
state-of-the-art.
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