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Abstract—Super-resolution enhancement is a kind of promising
approach to enhance the spatial resolution of images. To super-
resolve a satisfying result, regularization term design and blur
kernel estimation are two important aspects which need to
be carefully considered. In this paper, we propose a robust
regularized super-resolution reconstruction approach based on
two sparsity properties to deal with these two aspects. Firstly,
we design a sparse reweighted TV L1 prior to restrict the
first derivative of the upsampled image. Then, noticing that
only deblurring sparse high gradient areas can sharpen the
super-resolution result, we design an over-deblurring control
method to decrease the artifacts caused by inaccurate blur kernel
estimation. We also design a fast optimization algorithm to solve
our model. The experimental results show that the proposed
approach achieves a remarkable performance both in visual
quality and run time.

Index Terms—Super-resolution, Regularization construction,
Sparsity properties, Over-deblurring control, Convex optimiza-
tion.

I. INTRODUCTION

As the resolution of consumer electronics is becoming high-
er and higher, lots of low resolution (LR) images and videos
need to be upsampled to display. Besides, many smart phone
companies begin to use upsampling algorithms to improve
the performance of their phone camera system. Therefore,
the research on fast and robust image and video upsampling
algorithms has drawn a lot of attentions now.

Super-resolution (SR) (e.g. [1]) is a promising technology
for image upsampling, which is usually better than image
interpolation. The original image SR algorithms restore a
high resolution (HR) image from multiple LR images of the
same scene. These LR images are sub-pixel precision warped,
so more information can be extracted from LR images to
generate a HR image. However, as the sub-precision images
are not usually available, researchers are seeking ways to
super-resolve a HR image from a single LR image.

Single-image SR can usually be achieved by regularized SR
reconstruction approaches or example-based SR approaches.
Example-based SR approaches perform well or even better
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than regularized SR reconstruction approaches in some oc-
casions, but their drawbacks are obvious. Example-based SR
approaches need to train a dictionary, which costs memory
to store and can only be used in fixed upsampling factors.
Besides, training a dictionary and matching patches in the
dictionary are very time-consuming.

Regularized SR reconstruction approaches are free from the
drawbacks of example-based SR approaches. Recent research-
es of this kind (e.g. [2], [3], [4]) are all based on the SR
observation model and design different regularization terms to
restore HR images. Regularized SR reconstruction approaches
usually include two parts: interpolation and deblurring. The
main difficulties of regularized SR reconstruction approaches
are the regularization term design and blur kernel estimation.
Inproper regularization term and blur kernel estimation will
cause ringing artifact and the noise amplification in restored
HR results.

In this paper, we take advantage of two sparsity properties
and propose a novel fast and robust regularization SR recon-
struction algorithm. The first sparsity is that the distribution
of derivative filters in natural image is sparse. Levin et al. [5]
proposed an image deblurring approach using TV Lp norm
(0 < p < 1) as the regularization term and achieved a good
result without ringing artifact. However, as the TV Lp norm
(0 < p < 1) is not convex, they solved their model using
conjugate gradient algorithm in spatial domain which was very
slow. Different from the TV Lp norm (0 < p < 1), we use
reweighted TV L1 norm first proposed by Candes et al. [6] as
the sparse prior and design the weights to make the reweighted
TV L1 norm curve similar to TV Lp norm (0 < p < 1). We
also design a fast optimization algorithm to solve the reweight-
ed TV L1 norm regularization by using alternating direction
method of multipliers (ADMM) and proximal algorithm [7].
The second sparsity is that only the high gradient area needs
to be deblurred in the SR process. Over-deblurring in smooth
area only amplifies noise and introduces ringing artifact. We
design a multi-resolution based method to distinguish high
gradient area from low gradient area to make a mask to help
control the over-deblurring artifacts.

The rest of this paper is organized as follows. Section II
summarizes the related works. Section III describes the pro-
posed algorithm. Section IV discusses the experiment results.
Finally, in section V the conclusions are presented.



Fig. 1. Diagram of the proposed SR algorithm.

II. RELATED WORKS

In this section, we review the previous works on single-
image SR approaches: example-based SR approaches and
regularized SR reconstruction approaches.

Example-based SR approaches are based on statistical learn-
ing. Noticing that small patches of natural images tend to
recur many times in the scales that an observer can or
cannot visually perceive, Freeman et al. [8] trained a LR/HR
dataset from natural images, matched LR patches to find
corresponding HR patches in the dataset and then combined
them to achieve HR result. Similarly, Chang et al. [9] trained
the dataset and solved the weights of matched LR images by
manifold learning method LLE. Yang et al. [10] used sparsity
as a prior for dataset training and showed that a small set
of randomly chosen raw patches of similar statistical nature
can be trained as a good sparse dictionary. Glasner et al. [11]
introduced a unified framework for combining multi-image SR
and self-example-based SR. Their approach exploited patch-
similarity within and across scales to construct HR image.

Regularized SR reconstruction approaches model SR pro-
cess as an ill-posed reconstruction problem. Shan et al. [2]
proposed a gradient distribution prior and a feedback-control
framework which faithfully recovered the HR image from
input data. Sun et al. [3] proposed an SR approach using gra-
dient profile prior learned from natural images. Shen et al. [4]
considered viewers’ perceptual blur radius and retinal image
size to estimate Gaussian blur level for the SR reconstruction.

III. SUPER-RESOLUTION BASED ON SPARSITY
PROPERTIES

In the proposed algorithm, we take advantage of two spar-
sity properties to upscale the input LR image. We first super-
resolve the input LR image using regularized SR reconstruc-
tion with reweighted TV L1 prior. The reweighted TV L1

prior, which enhances sparsity of the first derivative of the
reconstructed SR result, results in a sharp SR output. Con-
sidering that deblurring only in sparse high gradient area can
help sharpen the interpolated image, we use multi-resolution
method to distinguish high gradient area from low gradient
area to make a mask to help control the over-deblurring
artifacts. Fig. 1 shows the diagram of our algorithm.

A. SR Reconstruction using Reweighted TV L1 Prior

According to the observation model, single LR image is
usually assumed to result from blurring, downsampling and

noise addition, which can be formulated as (1),

y = D · (B⊗ x) + n (1)

where x is the unknown HR image, B is the blind blur kernel,
⊗ is convolution process and D is the downsampling process.
n is the image noise, which is usually modeled as a set of
independent and identically distributed (i.i.d.) Gaussian noise.
y is the observed LR image. Here we assume that upsampled
i.i.d Gaussian noise is still i.i.d Gaussian noise, so the inverse
process can be formulated as (2),

x = B⊗−1 D−1 · y + n (2)

where D−1 is the interpolation process and ⊗−1 is deconvo-
lution.

The difficulty of implementing interpolation and deblurring
is that interpolation methods are various and the blur kernel is
unknown. We consider interpolation selection and blur kernel
estimation together. As 2D Gaussian kernel is the most widely
used blur kernel in image processing and can approximately
model other blur kernel by adjusting kernel size and the
standard deviation, we estimate B as 2D Gaussian kernel.
To select an interpolation, we have tried bilinear, bicubic,
NEDI [12]. We find that different interpolation methods do
not influence the deblurred result much in our model. For the
sake of simplicity, we select bilinear interpolation.

Since we have the interpolated image, we can do the
Gaussian deblurring process. As the distribution of derivative
filters in natural image is sparse, we incorporate the reweighted
TV L1 norm prior to enhance the sparsity of the first derivative
of the deblurred result in our model. The model is formulated
as (3),

min
x

1

2

∑
i,j

‖(B⊗ x− b)i,j‖22 + µ
∑
i,j

(
wi,jx ‖(Vxx)i,j‖1

+ wi,jy ‖(Vyx)i,j‖1
)

(3)

where b is the interpolated image, Vx and Vy are the
horizontal and vertical first derivative filter. µ is the weight
coefficient of regularization term. wijx and wijy are the weights
for horizontal and vertical derivative in each pixel (i, j), which
are constant when solving (3).

We use (4) to calculate the weights for our prior in each
iteration,

wk+1
i,j =

2

|(Vx)
k
i,j |+ 1

(4)

where wk+1
i,j in pixel (i, j) is calculated by the first derivative

in the k-th iteration.
Fig. 2 shows the 1D curve of L1 norm, L0.8 norm [5] and

reweighted L1 norm whose weights are calculated by (4). The
curve of our reweighted L1 norm, which is similar to L0.8

norm, is actually sparsity enhanced.
In order to solve (3) with proximal algorithm [7] and

ADMM, we reformulate (3) in matrix representation and



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

 

 
reweighted L1 norm
L1 norm
L0.8 norm

Fig. 2. Function curve of L1 norm, L0.8 norm and reweighted L1 norm
priors.

introduce two auxiliary variables z and y, as shown in (5).
Unlike optimization problem in [5], (5) is convex.

min
x,z,y

1

2
‖Bx− b‖22 + µ‖Wz‖1 +

ρ

2
‖Vx− z+

y

ρ
‖22

s.t. V =

[
Vx

Vy

]
(5)

W is diagonal matrix with weights on the diagonal. The
optimization algorithm is demonstrated as follows.

Algorithm 1 ADMM for Reweighted TV L1 norm.
Input:

Set B, V, b, µ, ρ and kmax;
Initialize k = 0, yk = 0, zk = 0 and Wk=diag(1);

Output:
Deblurred Image x;

1: Solve the reweighted TV L1 using ADMM:
while not converge do

xk+1 = (BTB+ ρVTV)−1(BTb−VTyk + ρVT zk),

zk+1
i = proxµwiρ−1

(
(Vxk+1 +

yk

ρ
)i
)
, for all i

yk+1 = yk + ρ(Vxk+1 − zk+1).

endwhile
2: Update the weights for each element:

wk+1
i =

2

|(Vx)
k
i |+ 1

3: Terminate on convergence or when k attains kmax. Oth-
erwise, k = k + 1 and go to Step 1;

4: return x;

Because matrix B and V are Block Toeplitz, ADMM can
rapidly be solved in frequency domain using fft2.

B. Over-deblurring Control

Although reweighted L1 Prior can help decrease the artifact-
s, the ringing artifact and noise amplification can still happen

because the Gaussian blur kernel sometimes cannot match the
real blur process and some areas are over-deblurred. In order
to control the over-deblurring, we take the advantage of the
second sparsity.

We find that deblurring only in the high gradient area can
sharpen the interpolated image and usually the area is sparse.
On the contrary, deblurring in the smooth area can easily to
cause artifacts and usually the smooth area is dense. So we
decide to distinguish the high gradient area from low gradient
area to make a mask, then apply deblurring only in high
gradient area to help control the over-deblurring artifacts. Fig.
3 demonstrates the mask generation method.

Fig. 3. Multi-resolution mask generation method.

We calculate the gradient map in the interpolated image to
determine the high gradient area for deblurring. However, the
interpolation process decreases the gradient, which misleads
the classification. In order to solve this problem, we use a
multi-resolution method which also calculates gradient in LR
image, then interpolates the LR gradient map and fuses two
maps to enhance the different-scale gradients in edge and
texture parts. After that, we use a threshold to classify the
gradient map into (0, 1) mask, 0 for high gradient area and 1
for low gradient area. The mask is used as a weight map to fuse
the interpolated image and the deblurred image. In the smooth
area, we replace the deblurred image with interpolated image
to control the over-deblurring. The process is formulated as
(6),

Final = Interpo×Mask+Deblurred× (1−Mask) (6)

As shown in Fig. 3, we slightly filter the (0,1) weight map
to smooth the weights along the boundary of two areas.

IV. EXPERIMENTS

We have done experiments on various images with different
SR factors. Fig. 4 and Fig. 5 show two examples. We com-
pare our algorithm with the nearest neighbour interpolation,
bicubic interpolation and Shan et al. [2]. Example-based SR
approaches are usually very slow and cannot offer flexible SR
factors, so we do not compare with these approaches here. Our
experiment platform is the computer with Intel Core i5-2400,
4G RAM, Windows 7 OS 32bit and Matlab 2013b.

Fig. 4 shows that our algorithm performs well on natural
images. Fig. 5 shows that our algorithm controls the over-
deblurring artifacts when blur kernel estimation is not enough
accurate.



(a) Nearest Neighbour. (b) Bicubic. (c) Shan et al. [2]. (d) Our algorithm.

Fig. 4. 3× SR example. Our algorithm is compared with nearest neighbour, bicubic and Shan et. al. [2]

(a) Nearest Neighbour. (b) Bicubic. (c) Shan et al. [2]. (d) Our algorithm.

Fig. 5. Over-deblurring Control example (2× SR). The σ of Gaussian kernel is 1.5 for both [2] and ours.

TABLE I
RUNNING TIME OF DIFFERENT SR FACTORS

SR times Running time
2× 2.78s
3× 3.62s
4× 7.96s
6× 15.49s
8× 20.90s

To demonstrate the speed of our algorithm, we super-resolve
the example 128 × 128 image, which is also used in Fig. 4,
to different sizes and show the running time in Table I.

V. CONCLUSION

A regularized SR reconstruction algorithm based on two
sparsity properties has been proposed in this paper. Using
these two sparsity properties, a sharp SR result is achieved and
artifacts are controlled. The proposed algorithm can flexibly
super-resolve images to any size and runs relatively fast
in our experiments. To get rid of matrix computation, our
optimization algorithm can be solved in frequency domain,
which also guarantees the running speed. In the next step, we
are going to implement our algorithm with C++ and use GPU
to accelerate it for real-time applications.
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